SYSTEM INITIALIZATION
SYSTEM DESIGNER'S NOTEBOOK

SUBJECT:

Internal Organization of Multics System Initialization

SPECIAL INSTRUCTIONS:

DATE:

This document supersedes the previous edition of the manual,
order number AN70-00, dated February 1975,

This System Designers’ Notebook describes certain internal
modules constituting the Multics System. It is intended as
a reference for only those who are thoroughly familiar with
the implementation details of tThe Multics operating system;
interfaces described herein should nct be used by aspplica-
tion programmers or subsystem writers; such programmers and

writers are concerned with the external interfaces only.
The external interfaces are described in the Myltics
Brogrammers' Manual, Commands and Active Functions (Order

No. AG92) and Subroutines {(Order No. ABGS3) .

As Multics evolves, Honeywell will add, delete, and modify
module descriptions in subsequent SDN updates. Honeywell
does not ensure that the . internal functions and internal
module interfaces will remain compatible with previous
versions,

05/29/84

ORDER NUMBER:

AN70-01

1 AN70-01

Multics Sysiem Designers' Notebooks {(8SDHNs) are intended for
use by Multics system maintenance personnel, development person-
nel, and others who are thoroughly familiar with Multics internal
system operation. . They are not intended for application
programmers or subsystem writers.

The SDNs contain descriptions of modules +that serve as
internal interfaces and perform special system functions. These
documents do not describe externsl interfaces, which are used by
application and system programmers.

This 8SDN contains a description of the software that
initializes the Multicse system. This description is by no means
complete in all its details; for a thorough understanding of
Multics initialization, or of any particular area within this
system, this SDN should be used for reference in conjunction with
the source of the relevant programs,

(C) Honevwell Information Systems Inc., 1984 File No.: 2L13

3/ 84 AN70-01

In addition to this manual, the volumes of +the Multics

Programmers' Manual (MPM) should be referred to for details of
software concepts and organization, external interfaces, and for

specific usage of Multics Commands and subroutines. These

volumes are:
MPM Reference Guide, COrder No. AG91
MPM Commands and Active Functions, Order No. AGS92

MPM Subroutines, Grder No. AGS3

3784 iii AN70-01

CONTENTS

Page

Section 1 Summary of Initialization . . . e e s i-1
Hardware and PL/1 Env1ronment

initialization 1-2

Page Control initialization . 1-2

File System initialization 1-3

Cuter ring Envirenment initialization 1-3

Bootload Command Envirocnment (bce) 1-3

Crash Handler (toehold) 1-4

Section 2 Collection 0O . e e e aa

Getting started

Programming in Collectxon 0

Module Descriptions .
bootload_abs_mode. alm .
bootload_0.alm
The firmware collectlon
bootload_console.alm
bootload_dseg.alm
bootload_early_dump.alm
bootload_error.alm
bootload_faults.alm
bootload_flagbox.alm .
bootload_formline.alm . o o
beetload_ info.cds . .-+ . v &
bootload_ioc.alm
bootload_linker.alm
bootload_loader.alm
bootload _slt_manager.alm
bootload_tape fw.alm . . ,
template_slt_.alm .

LI D R D N DR N A |
CRNNNOOPONVUARADWNNN -

Section 3 Collection 1 e .
Summary of Collect:on 1 Passes
normal (boot) pass
service pass .
early pass « e e
crash pass . . .« . « + + « 4 a w4 e
re_early pPass . . .« + « « 5 & a4
bce_crash pass foe e e e e e
shut pass . . e e e e e e s
Module Descr;ptions

1
PN NNUAN =~

WRWRWWLOWRAWY NNNNNI})NNNNNNNNNNNNNNN

iv AN70-01

CONTENTS (cont)

announce_chwm. pl1l
boot_rpv_subsystem.pl]l

boot_tape_
bootload _1.alm

io.pl1

collect_free_core, p11
create_rpv_partition.pll
delete_segs. pli
disk_reader.pll ., .
establish_ confxg_deck p11
fill_vol_extents_.pll

find_rpv_subsystem.pll

get_
get_

main.pl1l

io_segs.pll

he_load_mpc. pl]
init_aste_pools.pll
init_clocks.pl1l
init_early_config.pll
init_empty_root.pll
init_hc_part.pl1
init_partitions.pll
init_pvt.pil
init_root_vols.plil
init_scu.pll
init_sst.pll N
init_vol_header_.pl1
initial_error_handler,
initialize_faults.pll

initialize_+faults_data. cds

initializer.pll
data_init.pl1
load_disk_mpcs.plil
load_mst. p11
make_sdw.pl]l .
make_segs_paged. pll

iom_

move_non_perm_wired_segs. p11

ocdem_.pl1 .
prds_lnlt pli .
pre_link_hc.pllt . . .
read_disk.pl1 .
read_disk_label.pl1l

real_

scas_init.pl1

scs_and_clock_

SYS_
tape_reader. pll

tc_

info.cds

init.pl1

3

pl1

initializer.pll. pmac

init.pl1
segment_loader. pll
slt_manager.pll

-
()
Q
1]

| I S |

1

i
MOMNN=2—=-—=000

wwwmwwwwgwmwwwwwww

]
—
M

AN70-01

CONTENTS (cont)

-
o
Q
0]

Section 4 The Bootload Command Environment
Initialization . . .
Environment and Fac111t1es
Restrictions . . . C s e
Mcdule descrlptxons C o

bce_abs_seg.pll

bece_alert.pli

bee_alm_die. alm

bce_ appendlng_sxmulatlon pll
bce_check_abort.pll .
bce_command_phocessor_.p11 .
bce_console_io. pl1i
bce_continue. pltil . .
bce_data.cds
bce_die.pl1 . .
bce dlsplay_lnstructlon p11
bece_display_scu_.pll
boce_dump. pl1l

bece_error.pll

bece_esd.pll .
bece_exec_com_.pl1l
bce_exec_com_input.pll
bce_execute_command_.pl]

! t 1 U0t ko
et e e et 2 2 S = GROOVOPROENNNNNOORARDMDMRN Q-

ALLALLLJ&.&LLLALLALJ}LL&Lbbhhhhhhhh-hhh

bce_fwload.pli . e -10
bce_get_flagbox.pll -10
bce_dget_to_command_ level, pl1 -10
bce_inst_length_.pll -10
bece_list_requests_.pll -11
bce_listen_.plt -11
bce_map_over_requests_.pll -11
bece_name_to_segnum._. p11 =141
bce_probe.pll. pmac -11

Request routines -12

Internal Routines -13
bece_probe_data. cds Do e e -14
bece _probe_fetch_.pll e e e 4-14
bee_cuery.pll! 4-14
bece_ready.pll o 4-15
bece_relocate_instructien_.pll . . . 4-15
bce_request_table_.alm 4-15
bece_severity.pll Do e e e e e 4-15
bece_shutdown_state.pll e e e 4-158
bce_state.pll . . . v e e 4-16
bootload_disk_post. p11 C e e s 4-18
bootload_+s_.pl1 c o e e e 4-16
bootload_fs_cmds_.pl1 4-17
bootload_qgedx.pll1, 4-~17
config deck _dats_.cds . . ., 4-17

vi AN70-01

CONTENTS (cont)

Page
config_deck_edit_.p11 4-17
establish_temp_segs.plt 4-17
find_file_partition.pl1 4-18
init_bce.pll e e e e e e 4-18

Section 5 Crash Handling e e
Early Crashes
The techold .
Module Descrlptlons
fim.alm . .
Sinit toehold p11 e e
save_handler_wmc.alm ,

1

1
NN~ ——

1

Section 6 Collection 2« « .+ .+ .
Order of execution
Module Descriptions

accept_fs_disk.pll
accept_rpv.pli
create_root_dir.pl1l
create_root_vtoce, pll
dom_man.pll .
dir_lock_init.pll e s
fnp_init.pl1 o e e
getuid, alm .
init_branches. p11
init_dm_journal_seg.pll
init_hardcore_gates.pll
imit_lvt.plil
init_processor.alm
init_root_dir.pl1
init_scavenger_data.pll o e
init_sst_name_seg.pl1
init_stack_0.pl1
init_str_seg.pll .
init_sys_var.pll v e
init_volmap_seq.pll
init_vtoc_man.pll
initialize_faults,. pll
kst_util.pll e h e e
start_cpu.pll 0 00
syserr_log_init.pl1
te_init.pl1

| B T N T N DN B TR S R |

]

'
QOO COOOONNNNNOOOODVNUDDAMLMALADY R~

o

|

Section 7 Cotlection 3 . o e e e e
trder of Executlon A e e e e

Module Descriptions .

init_proc.pt1, .

jo_config_init.pll .o

1

i e Bl B It mmmmmmmmmmmmmmmo‘)mmmmmmmmmmmmm aaaagaaad

]
S

vii AN70-01

CANTENTS {(cont)

ioi_init.pl1
ioi_page_table. p11
load_system.pll
te_init.pll

Section 8 Mechanisms . . .
Hardcore Segment Creatlon
Hardware and Configuration
Initialization \
Interconnection of Multlcs hardware
Configuration of Multics hardware
CPU and [I0M hardware configura-
tion
sScu hardware coanguratlon
SCU addressing
Inter-module communication
Interrupt Masks and Assignment
Operations upon masks
Sequence of Initialization
Page Control Initialization
Segment and Directory Control
Initialization .
Segment Number A331gnment
Traffic Control Initialization

Section 8 Shutdown and Emergency Shutdown

Order of Execution of Shutdown

Order of Execution of Emergency

Shutdown

Module Descrlptions . A
deactivate_for_demount. pll .
demount_pv.pl1
disk_emergency. pli .
emergency_shutdown.alm ., .
fsout_vol.pll
scavenhger.pli
shutdown.pll v . v
shutdown_+ile_system. p11 . .
switch_shutdown_file_system.alm .
tc_shutdown.pllt
wired_shutdown.pll

Appendix A Glossary
Appendix B Initialization and Initialized Data Bases

_linkage (active init 1linkage)
as linkage (active supervisor 11nkage)

viii

1
o mach

1
- ONOOU R

W=-=0

L T U B T |

A
oaA

]
—

1 Pr o
SNNNNOOOUOAD DR

]
—

ml?m T O OOOUOOOLOLODOCO OO (Q(? G R LOR® QO VO N~

AN70-01

CCONTENTS {(cont)

bce_data (bootload command environment
data) « « «
bootload_info

config_deck . ,

core_map .

dbm_seg (dumper blt map seg)

dir_lock_sed . . . + « « « + « s a2

disk_post_guesue_seg .

disk_seg . .

dm_Jjournal seg_ .

dn3%S_data.

dn355_mai lbox .

dseg (descriptor segment]

fault_vector (fault and lnterrupt vec-
tors) 0w e

flagbox . .

inzr_stk0 (inltlalzzer stackl
1nt_unpaged_page_tab1es
io_config_data
io_page_tables . . e .

joi_deta« .

iom_data « . .+ « .

iom_mailbox

kst (known segment table)

vt (logical volume tablel

name_table . e e e e

oc_cata . . .

physical_ record buffer R

pvt (physical volume table) .
scas (system controller addressing
segment) e e e e e
scavenhger_data . . . « e s

scs (system communxcatlohs segment)
slt (segment loading table) v e
sst (system segment table) . . .
sst_hames_ o e e
stack_O_data

stock_seg . .

str_seg (system tra:ler segment)
sys_info .,
sys_boot_info o e e e e
syserr_data v . 0 s s
sygerr_log ,

tc_data . . o e e e e
tc_data_ header v e e e e e

toehold « + o v 0 . 4
tty_area« « .« .

Tty _buf . . . 0 . 0

ix

-
D
Q
o]

DS NN N N RN NN A NN B S |

oo WWUJW'UTUJ(DWU?UJW(?U‘JUJW YOO eEEWwom
WY VRRPENNNOIAOTNANTN ADBDAAIWRIWNND-—=

i

AN70-01

CONTENTS (cont)

Page

Tty _tables . . . e e e e B-14
unpaged_page_ tables Ve e e e B-14
vtoc_buffer_seg e o« a4 e s e e . . B-14
_linkage (wired init linkage) . e . B-15

h1red hardcore_data . . . B-15
ws_linkage (wired supePV1sor llnkage) B-15

Appendix C Memory Layout+ + v« o« 4 0w -1

I ndex T T T i-1

X AN70-01

SECTION 1

SUMMARY OF INITIALIZATION

~ Multics initialization, as described in this SDN, can be
thought of as divided into the following parts:

% Hardware and PL/1 Environment initialization (Collec-
tion 0Q)

% Page Control initialization (Collection 1 service pass)

* Bootload Command Environment (bce) (Collection 1 multi-
ple passes)

* Crash Handler (toehold)

% File System initialization (Collection 2)

% Guter ring Environment initialization (Collection 3)

The parts listed before collectich 2 are collectively called
"Bootload Multics."”

A collecticn iz simply a set of initialization routines
that are read in and placed into operation as a unit to perform a
certain set, or a certain subset, of the tasks required to
initialize a portion of the Multics supervisor. Each collection
consists of a distinct set of programs for reasons discussed
throughout this SDN. Ewven though each.. collection mostly exists
to perform a particular set of functions, they are normally
referred to by their number (which have only historical signifi-
cance) rather than the name of their function.

Initialization may also be thought of as having three
separate functions!

Bringing up the system
This role is obvious, The description of this role
follows along the functions needed to perform it. Each
porticon of initialization runs, utilizing the efforts
of the previous portions to build up more and more
mechanism until service Multics itself can run.

Providing a command environment before the file system is

activated from which to perform configuration and disk
maintenance functions

1-1 AN70-01

Providing an environment to which service Multics may crash
which s capable of taking a dump of Multics and
initiating recovery and reboot operations

These l1ast two functions are the role of bootload Multics
{bce) ., They take advantage of +the fact that during
initialization an environment is built that has certain
facilities that allow operations such as disk manipulation to
occur but it is an environment in which the disks themselves are
not vet active for storage system operations. This environment,
at an intermediate point in initialization, forms the bootload
command environment {(bcel.

The bootload command environment is saved before further

initialization operations occur. When service Multics crashes,
service Multics is saved and this bce "crash" environment is
restored, This safe environment can then examineg or dump the

service Multics image and perform certain recovery and restart
operations without relying on the state of service Multics,

HARDWARE AND PL/1 ENVIRONMENT INITIALIZATION

The purpose of collection 0 is to set up the pl/l
environment and to start collection 1. It has a variety of
interesting things to perform in the process, First of all,
collection 0O must get itself running. When Multics is booted
from BOS, this is an easy matter, since BOS will read in the
beginning of collection 0, leaving the hardware in a known and
good state and providing a description of the configuration
{config_deck) around. When not booted from BOS, that is, when
booted via the I0M boot function, collection 0 has the task of
getting the hardware into a good and known state and finding out
oh what hardware it is working. fnce collection 0 has set up the
hardware, it can load colliection 1 intoe memory. Collection 1
contains the modules needed to support programs written in pl/i;
thus, this loading activates the pl/1 environment. After this
time, more sensible programs can run and begin the true process
of initialization, The result of this collection is to provide
an environment in which pl/1 programs can trun, within the
confines of memory.

PAGE CONTROL INITIALIZATION

The main task of collection 1 is 1o make page control
operative, This is necessary so that we may page the rest of the
initialization pregrams (initialization programs all have to fit
into memory until this is done). The initialization of page
control involves setting up all of the disk and page control data
bases, Also, the interrupt mechanism must be initialized. The
result of this collection is to provide an environment in which
ifo devices may be operated upon through normal mechanisims (i.e.,

1-2 AN70-01

via page faults or direct calls to the standard device control
medules) but in which the storage system is not active, At the
final end of collection 1, this environment becomes paged, using
a special region of the disks (the hardcore partition) so that
the storage system is not affected.

Collection 1 can be run multiple tTimes. The effect of
making a pass through collection 1 is to set up the device tables
{and general configuration describing tables) to reflect a new
configuration. The various passes of collection 1T are the key to
the operation of bce. There are several times when the running

of collection i is necessary. It is necessary when we first
start up, to =2llow =ccessing the hardware units "discovered” by
collection O, fince the correct configuration is determined via

bce activities, collection 1 must be re-run to allow all of the
devices to be accessible during the rest of initialization and
Multics service proper. Finally, when the c¢crash environment is
restored (see below), another pass must be made to provide
accessibility to the devices given the state at the time of the
crash,

FILE SYSTEM INITIALIZATION

With paging active, collection 2 can be read into a paged
environment. Given this environment, the majeor portion of the
rest of initialization oCccurs. Segment, directory and traffic
control are initialized here, making the storage system accessi-
ble in the process, The result of this collection is an
environment that has active virtually all hardcore mechanisms
heeded by the rest of Multics.

OUTER RING ENVIRONMENT INITIALIZATION

» Collection 3 is basically a collection of those facilities
that are reguired to run in outer rings. In particular, it
contains the programs needed to provide the initializer's ring
one environment, especially the code to perform a reload of the
system (especially the executable libraries). After the execu-
tion of this collection, the lnitializer enters into a ring one
command environment, ready to locad the system (if necessary) and
start up the answering service. {Activities performed from ring
one onward are not covered in this SDN.)

BOOTLOAD COMMAND ENVIRCONMENT (BCE)

The bootload command environment is an environment that can
perform configuration and disk management functions. It needs to
be able to support i/o to devices in a pl/1 environment. Also,
since bce must be able to operate on arbitrary disks, it must be
capable of running before the storage system is active, Thus, it

1-3 AN70-01

is equivalent to the collection 1 envirocnment before the environ-
ment becomes paged. In this envirecnment, built by a special run
of collection 1, a series of facilities provides a command
environment that allows pl/1 programs to run in a manner similar
to their operation in the normal Multics programming environment.

CRASH HANDLER (TOEHGLD)
When Multics has crashed, Muitics is incapable of

performing the types of analysis and recovery operations desired
in its distressed state. Thus, a safe environment is invoked to
provide these facilities, Since bece is capable of accessing
memory and disks independently of <the storage system {and the
hardcore partitions), it becomes the obvious cheice for a crash
environment. When Multics crashes, bece is restored to operation.
Facilities within bce can perform a dump of Multics as well as
start recovery and reboot operations, The crash environment
consists of the mechanisms needed to save the state of Multics
upon a crash and to re-setup the bootload command environment.
These mechanisms must work in the face of wvarying types of system
failures; they must also work given the possibility of hardware
reconfiguration since the time the safe environment was saved.

1-4 AN70-01

SECTION 2

COLLECTICN ©

_ Collection 0O .in Bootload Multics is an ensemble of ALM
programs capable of being booted from BOS or the I0M, reading
themselves off of the boot tape, loading tape firmware if needed,
setting up an [/0 and error handling environment, and loading
collection 1.

Collection 0 is organized into two modules:
bootload_tape_ label, and bound_bootlioad_ 0. The first is an MST
label program designed to read the second into its correct memory
location, after being read in by the [16M bootload program, The
second is a bound collection of ALM programs. bound_bocotload_0O
takes extensive advantage of the binder's ability to simulate the
linker within a bound unit, The programs in bound_bootload_0 use
standard external references to make intermodule references, and
the binder, rather than any run-time linker or pre-linker,
resolves them to TSR-relative addresses, Any external references
{such as to the config deck) are made with explicit use of the
fact that segment numbers for collection O programs are fixed at
assembly time.

e

_ bootload_tape_label is read in by one of tTwo means, In
native mode, the I0M or 1I10C reads it into absolute location 30,
leaving the PCW, DCW's, and other essentials in locations 0O

through 5. The 10C leaves an indication of its identity just
after this block of information.

In BOS compatikility mode, the BOS BOOT command simulates
the I0M, leaving the same information. However, it also leaves a
config deck and flaghox (although bce has its own flagboxl in the
usual locations. This allows Bootload Muitics to return to BOS
if there is a BOS to return to. The presence of BUOS is indicated
by the tape drive number being non-zero in the idcw in the "IOM"
provided information.

2-1 AN70-01

The label overlays the interrupt vectors for the first two
I0M's. Because the label is formatted as a Multics standard tape
record, it has a trailer that cannot be changed. This trailer
over lays the interrupt vectors for channels B9 and B10. Without
a change in the label format, the bootload tape controller cannhot
use either of these channels as a base channel, because the label
record wipes out the vectors that the [0M bootload programs sets
up. This prevents control {from transferring to the 1label
program,

The 1label program first Iinitializes the processor by
loading the Mode Register and the Cache Mode Register, and
clearing and enabling the PTWAM and the SDWAM. it then reads ailil
of bound_bootload_0 off the tape. This action places the toehold
and bootload_ecarly_dump into their correct places in memory, in
as much as these 1two modules are bound to be the first two
objects in bound_bootload_0O. If this is successful, it transfers
to the beginning of bootload_abs_mode through an entry in the
toehold. {This entry contains the address of bootload_abs_mode,
via the linking performed by the binder.) This program copies
the template descriptor segment assembled into template_sit_ to
the appropriate location, copies int_unpaged_page_tables and
unpaged_page_tables 1o their correct locations, loads the DSBR
and the pointer registers, enters appending mode, and transfers
to bootload_ 0.

PROGRAMMING IN COLLECTICN Q

Collection O programs are impure assembly language pro-
grams, The standard calling sequence is with the tsx2 instruc-

tion. A save stack of index register 2 values is maintained
using id and di modifiers, as in traffic control. Programs that
take arguments often have an argument list following the tsx2
instruction. Skip returns are used to indicate errors.

The segment bootload_info, a cds program, is the repository
of information that is neceded in later stages of initialization.
This includes tape chanhel and device numbers and the like, The
information is copied into the collection 1 segment svs_boot_info
when collection 1 i3 read in,

MODULE DESCRIPTIONS

bootload abs mode.alm

As mentioned above, bootload_abs_mode is the first program
to run in bound_bootload_ 0. The label program locates it by
virtue of a tra instruction at a khown place in the toechold
{whose address is fixed); the tra instruction having been fixed
by the binder. It first clears the memory used by the Collection

2-2 AN70C-01

D data segments, then copies the template descriptor segment,
int_unpaged_page_tables and unpaged_page_tables from
template_slt_. The DSBR is loaded with the descriptor segment
SDW, the pointer registers are filled in from the ITS pointers in
template_slt_, and appending mode is entered. bootload_abs_mode
then transfers contrel to bootload_O%begin, the basic driver of
collection zero initialization.

bootload O0.alm

bootload _0's contract is to set up the 1/0, fault, and
console services, and then lo=d and transfer control 1o coilec-
tion 1. As part of setting up the 1/0 environment, it must load
tape firmware in the bootload tape MPC if BOS is not present,
bootload_0 makes a series of tsx2 calls to set up each of these

facilities in turn, It calls bootload_io$preinit to interpret
the bootload program left in low memory by the IGM/IIC0C/ 10X,
including checking for the presence of BOS;

bootload_flagbox$preinit <to set flagbox flags according to the
presence of BOS; bootload faults$init to Ffill in the fault
vector; bootload_slt_manager$init_slt to copy the data from
template_slt_ to the SLT and name_table; bootleoad_io$init to set
up the 1/0 environment; bootload_console$init to find a working
console and initialize the console package; bootload_loader$init
to initialize the MST lecading package; bootload_tape_fwlboot to
read the tape firmware and load it into the bootload tape
controller; bootload_loader$locad_ceocllection to load Cellection
1.0; bootload_loadersfinish to copy the MST loader housekeeping
pointers to their permanent homes; and bootload_linker$prelink to
snap all links in Collection 1.0,

Finally, the contents of bootlvad_info are copied into
sys_boot_info. Control is then transferred to bootload_1.

' R collectic

As described below under the heading of
"bootload_tape_fw.aln", tape firmware must be present on the MST
as ordinary segments. It must reside in the low 258K, because

the MPC's do not implement extended addressing for firmware
loading. The tape firmware segments are not needed after the MPC
is loaded, so it is desired to recycle their storage. It is
desired to load the MPC before collection 1 is 1lcaded, so that
backspace error recovery can be used when reading the tape. The
net result is that they need to be a separate collection. To
avoid destroying the old correspondence between collection num-
bers and sys_info$initialization_state values, this set exists as
a sub-collection. The tape firmware is collection 0.5, since it
is loaded before collection 1. The segments in collection 0.5
have a fixed naming convention. Each must include among its set
of names a name of the form “fwid. Tnnn", where "Thnnn" is a four

2-3 AN70-01

character controller tvpe currently used by the BOS FWLOAD
facility. These short names are retained for two reasons,
First, they are the controller types used by Field Engineering.
Second, there is no erase and kill processing on input read in
this environment, so that short strings are advantageous. Note
that if +the operator does make a typo and enters the wronhg
string, the gquestion is asked again.

koot load conscle.alm

bootioad_console uses bootload_io to do console /0. Its
initialization entry, init, finds the conscle on the bootload
1GM. This is done by first 1looking in the config deck, if BOS
left us ohe, or, if not, by trying to perform a 51 (Write Alert)
comment to each channel in turn).. Only conscle channhels respond
to this command. When a console is found, a 57 (Read ID) command
is used to determine the model.

The working entrypoints are write, write_nl, write_alert,
and read_line. write_nl is provided as a convenience, All of
these take appropriate buffer pointers and lengths. Read_1line
handles timeour and operator error statuses.

There are three types of console that bootload_conscle must
support. The first is the original EMC, CSUB00D1, It requires
all its device commands to be specified in the PCW, and ignores
IDCHW's. The second is the LCC, CSUG601. It will accept commands
in either the PCW or IDCW's. The third type is the IPC-CONS-2.
In theory, it should be just like the LCC except that it does NOT
accept PCW device commands, Whether or not it actually meets
this specification has yet to be determined.

To handle the two different forms of /0 (PCW commands
versus IDCW's), booctload_conscle uses a table of indirect words
pointing to the appropriate PCW and DCW lists for each operation. -
The indirect words are setup at initializaticn time. The LCC is
run with IDCW's to exercise the code that is expected tc run on
the IPC-CONS-2.

bootload dseg.alm

bootload _dseg's task iIs to prepare SDW's for segments

loaded by bootload_loader, the collection zero loader.
bootload_dsegtmake_sdw takes as an argument an sdw_infeo structure
as used by sdw_util_, and constructs and installs the SDW. The
added entrypoint bootload_dsegbmake_core_ptw is used by

bootload_loader to gencerate the page table words for the unpaged
segments that it creates.

2-4 AN70-01

bootload garly dumb.alm

When an error occurs during early initialization,

bootload_ecarly_dump is called, It is called in three ways.
First, if bootload_error is called for an error (as opposed to a
warning), this routine is called. Secendly, if a crash should

cccur later in initialization (after collection 0) but before the
tochold is set up (and bce running), the toechold will transfer
here. Third, the operator can force a transfer to this routine
through processor switches any time up until collect_free_core
runs. (This includes while bce is running.) This is done by
force executing a "tra 300000" instruction.

bootload_early_dump starts by reestablishing the collection
0 environment (masked, pointer registers appropriately set,
etc.). It then uses bootload_console to ask for the number of a
tape drive on the bootload tape controller to use for the dump.
When it gets a satisfactory answer, it dumps the first 512k of
memory (that used by early initialization and bce), onhe record at

a time, with a couple of miscellanecus values used by
read_ear ly_dump_tape (which constructs a normal format dump). I+
an error occurs while writing a record, the write is simply
retried (ho backspace or other error recovery)l. After 16

consecUutive errors, the dump is aborted, a status message
printed, and a new drive number requested,

bootload error.alm

bootload_error is responsible for all the error messages in

collection 0O, It is similar in design to page_error.alm; there
is one entrypoint per message, and macros are used to construct
the calls to bootload_formline and bootload_console,
bootload_error also contains the code to transfer *to
bootload_ear ly_dump, There are two basic macros used: "Yerror",
which causes a . crash with message, and “"warning”, which prints

the message and returns, A1l the warnings and errors find their
parameters via external references rather than with call parame-
ters. This allows tra's to bootload_error to be put in error
return slots, like:

tsx2 read_word
tra bootload_crror$console_error

" error, status in

" bootload_conscledlast_error_status
v " normal return

Warnings are called with tsx2 calls.

2-5 AN70-01

beotload faults.alm

bootload_faults sets up the segment fault_vector. Al
faults except timer runout are set to transfer to
bootload_error$unexpected_fault. All interrupts are set to
transfer control to bootload_error$unexpected_interrupt, since no
interrupts are used in the collection zero environment, The same
structure of transfers through indirect words that is used in the
service fault environment is used to allow individual faults to
be handled specially by changing a pointer rather than
constructing a different tra instruction (also, instructions do
not allow *its® pointers within them). The structure of the
scu/tra pairs (but not the wvalues of the pointers) formed by
bootload_faults is that used by the rest of initialization and
service.

bootload flagbox.alm

bootload_flagbox zeroes the bece flagbox. It also zeroes
the cold_disk_mpc flag when BOS is present for historical
reasons., Various values are placed in the flagbox that no onhe
looks at., This program is responsible for the state of the BUOS
toehold as well. It copies the BOS entry seguences into the bce
toechold and sets the bce entry sequence into the BSOS toshold for
the sake of operators who enter the wrong switches.

bootload formline.alm

This program is a replacement for the BOS erpt facility.
It provides string substitutions with ioa_-like format controls.
1t handles octal and decimal numbers, BCD characters, ascii in
units of words, and ACC strings. Its ohly client is
bootload _error, who uses it to format error message. The BCD
characters are used to . print firmware I[D's found in firmware
images. I[ts calling sedquence is elaborate, and & macro,
"formline", is provided in bootload_formline. incl.alm

bootload info.cds

The contents of this segment are described under data
bases.

bootload ic.alm

bootload_ic is an io package designed to run onh IOM's and
11IG8C"'s. It has entrypoints +to connect to channels with and
without timeouts. It always waits for status after a connection.
It runs completely using abs mode i/0, and its callers must fill
in their DCW lists with absclute addresses, This is done because

2-6 ‘ AN70-01

NSA 10M's do not support rel mode when set in PAGED mode, and
there iis no khnownh way to find out whether an IOM is in paged
mode. Under normal operation, the config card for the 1M is
available to indicate whether the I0M is in paged mocde or not,
relieving this difficulty,

The preinit entrypeint is called as one of the first
operations in collection 0. Besides setting up for i/o0, it
copies and determines from the I1OM/1]10C/BOS provided boot info
the assume_config_deck (BOS present) filag and the system_tvpe
value,

bootload linker .alm

bootload_linker is responsible for snapping all tinks

between collection one segments. It walks down the LOT looking
for linkage sections to process. For each one, it considers each
link and snaps it. It uses bootlocad_slt_manager$get_seg_ptr to

find external segments and implements its own simple definitions
search.

bootload loader.slm

bootiovad_loader is the collection zero leader (of collec-
tions 0.5 and 1). It has entrypoints *to initialize +the tape
loader (init), lvad a collection (load_collection), gskip a
collection (skip_collection), and clean up (finish). The loader
is an alm implementation o¢f segment_lcoader.pll, the collection 1
loader, It reads records from the mst, analvzes them, splitting

them into slt entries, definitions and linkage sections, and
segment contents, Memory is obtained for the segment contents
using allocation pointers in the slt. Page tables are allocated
for the segment within the appropriate unpaged_page_tables seg-
ment. When proper, the breakpoint.page = is added as another page
to the end of the segment, Definitions and linkage sections are
added to the end of the proper segments (ai_linkage, wi_linkage,
ws_1linkage, as_linkage). The locader has a table of special
segments whose segment numbers (actually ITS pointers) are
recorded as they are read in off of the tape. These include the
hardcore linkage segments, needed to lecad linkage sections,
definitions_, and others, The leocader maintains its current
allocation pointers for the linkage and definitions segments in
its text. bootload_loader$finish copies them into the headers of
the segments where segment_loader expects to find them.

bootload slt manager.alm
bootload_slt_manager is responsible for managing the Seg-
ment Loading Table (SLT) for collection =zero,. It has three

entries. bootload_slt_managersinit_slt copies the SLT and name

2-7 AN70-01

table templates from template_slt_ to the slt and name_table

segments, bootload slt_manager$build entry is called by
bootload_loader to allocate a segment number and fill in the SLT
and hame table from the information on the MST.

bootload_slt_manager$get_seg ptr is called by bootload_linker to
search the SLT for a given nams. It has imbedded in it a copy of
hash_index_ used to maintain a hashed list of segment names
compatible with the list for slt_manager in further collections.

bootload tape fw.alm

beootload_tape_fw is responsible for loading the bootload
tape MPC. It begins by loading collection 0.5 into memory with a
call to bootlocad_loader$load _collection. By remembering the
value of slt,last_init_seg before this call, bootload_tape_F{fw can
tell the range in segment numbers of the firmware segments.
Firmware segments are assigned init_seg segment humbers by
bootload_loader, but are loaded low in memory, for reasons
described above, bootload_tape_fw then determines the correct
firmware type. If beotleoad_info specifies the controller type,
then it proceeds to search the SLTE names of the firmware
segments for the appropriate firmware. If bootload_info does not
specify the firmware type, then bootload_tape_fw must ask the
operator to supply a controller type. This is because there is
no way to get a controller to identify itself by model.

Each of the firmware segments has as one of its SLTE names
(specified in the MST header) the six character MPC type for
which it is to be used. bootload _tape_fw walks the slt looking
for a firmware segment with the correct name. If it cannot find
it, it re-queries (or gueries for the first time) the operator
and tries again.

Having found the right firmware, the standard MPC bootload
sequence is initiated to boot the tape MPC. The firmware
segments’ SDW's are =zeroed, and the slt allocation pointers
restored to their pre-collection-0.5 values. bootload_tape_+w
then returns,

template slit .alm

This alm program consists of a group of invelved macros
that generate the SLTE's for the segments of collection zero. It
is NOT an image of the segment slt, because that would include
many zero SLTE’s between the last sup seg in collection zero and
the first init seg. Instead, the init seg SLTE's are packed in
just above the sSuUp seds, and bootload_slt_manager$init_slt
unpacks them, It alseo contains the template descriptor segment,
packed in the same manher, and the template name iable, The
initial cohtents of int_unpaged_page_tables anc!
unpaged_page_tables are alss generated. Also present are the

2-8 AN70-01

absolute addresses, lengths, and pointers to each of the cellec-
tion 0 segments for use elsewhere in bound_bootload_0.

2-9 AN70-01

SECTICON 3

COLLECTION 1

The basic charter of collection 1 is to set up paging,
fault handling, as well as various data bases nheeded for paging
and other like activities, Collection 1 can run multiple times,
for various reasons.

SUMMARY OF COLLECTICN 1 PASSES

The first run through collection 1 is known as the "early”
pass which is described below. It is arun in which we are
restricted to work within 512K and in which only the rpv is
known; in fact, it is +this pass which finds the rpv and the
config deck. If BOS is present, this pass is not necded. The

end of this pass is the arrival at "early" command level, used to
fix up the config deck, in preparation for the "boot"” pass.

The second pass, which is khown as "bootload Multics
initialization", also runs only within S12K. It, however, has
knowledge of all disks and other peripherals through the config
deck supplied either by BOS or the early initialization pass.
This pass is made to generate a crash-to-able system that can ke
saved onto disk for crash and shutdown purposes. After the crash

handler (this image) is saved, the bootiocad Multics “"boot"
command level can be entered. This level allows the booting of
Multics service. After Multics has shut down, a slight variant

of this pass, the "shut" pass, is run in a manner similar to that
for the "crash" pass, described below.

The third pass (which actually comes after the fourth) is
another run of bootload Multics initialization performed after
Multics has crashed. This pass is made to re-generate various
tables to describe the possibly different configuration that now
exists after having run Multics, Beotload Multics "crash"
command level is then entered,

The fourth pass through collection 1 is called "service
initialization”, which runs using all memory and devices, The

3-1 AN70-01

result of this pass is suitable for running the later collec-
tions, and bringing up service.

The "early" pass creates a safe environment consisting of a
set of programs in memory and a synthesized config deck that
describes kneown hardware. This is saved away tc¢ handle crashes
during the "boot" pass. If the "boot" pass fails, the tochold
restores this earlier saved envircnment which then runs a
"re_ecarly” pass. This is really a normal pass, but using the
saved away config deck of known good hatrdware. The "re_early”
pass comes back to an "early" command level to allow the operator
to fix the deck or hardware.

When the "boot" pass succeeds, it also saves a good memory
image and the now confirmed site config deck. After the "boot"
pass saves this image, the "boot" command level is entered and
eventually it boots Multics, running the "service" pass. If this
fails, the toechold restores the saved image. A "bce_crash" pass
then runs, This is a normal pass but one in which the saved
config deck is used. This pass is run on the assumption that,
ecither a bce command died and the operator may now examine it, or
that the "service" pass found a problem. The "bce_crash” level
allows the operator to fix things.

Ghce the boot of service Multics completes collection 1, a
crash or shutdown will invoke the toehold to restore bce. This
time, however, the current config deck is used 1o utilize any
reconfigurations that have occured. bce will come to the "crash"
or "boot" command levels,

We'll start by leooking at the basic initialization pass,
that used to come to the normal ("boot") bce command level.

NORMAL (BOGT) PASS

The segquence of events in a normal initialization pass is
given here. As of the time of the start of a normal
initialization pass, the config deck has been found, gither by
BOGS or the early initialization pass. All other data bases
besides sys_boot_info and sys_info set or created during previous
initialization passes have been deleted. The pass starts with
savinhg certain attributes, such as fres core extents, for later
restoration at the end of the pass (before running another]).

scs_and_clock_init fills in the initial scs (system config-
uration segment) data from the config deck. This is information
on the processors and the memory controllers,.

get_io_segs, iom_data_init, ocdem_$init_all_consoles, and

scas_ihit are run to set up the disk_seq, pvt, iom_data,
ioi_data, oc_data and the system controller addressing segment.

3-2 AN70-01

te_init initializes tc_data's apte and itt lists.

init_sst gencrates the sst and core map appropriate for the
pass. This is the last real memory allocation. After this time,
allocation of memory based upon the data in the slt is
deactivated. The remaining tables either have memory already
allocated for them or are generated paged, once paging is
started. announce_chwm anhnounces memory usage.

initialize_faultstinterrupt_init initializes the interrupt
vector, With iom_data and oc_data set up, this permits ocdcm_ to
be used for conscle /0. The interrupt mask is opened with a
call to pmuit$set_mask.

The basic command environment facilities (/0 interfaces
and a free area) are. set up in a call to init_bce. {BCE is an

acronym for Bootload Command Envirocnment). This allows programs
that guery the operator to do so in a more friendly fashion than
raw calls to ocdcm_. Further descriptions of bce facilities

follow later.

load_disk_mpcs runs {only during a "boot" pass and only
when we do not have BOS present) to make sure that all disk mpcs
have firmware active within them.

init_pvt, read_disk$init and init_root_vols together have
the net effect of setting up disk and page control. No segments
are paged at this time, though, except for rdisk_segd. Once we
reach here, we know that the config deck describes a set of
hardware sufficient (and valid) enough to reach command level and
so we save the config deck as safe_config_deck.

establish_temp_segs maps the bootload paged temp segments
onto the reserved area for them in the "bce" partition.
find_file_partition maps the bce file system area
(bootload_file_partition) unto the “file" partition.

load_mst$init_commands maps the pagable bce programs onto
the areas of disk in which they were read by load_mst earlier.

If this is a "early" or "boot" pass, this environment is
saved and the tochold setup to invoke it. This is done by
init_toeholid. The "earlily" pass saves the entire environment; the
"boot" pass simply saves the safe_config_deck so determined by
this pass.

bece_get_to_command_level can now be called to provide the
appropriate bce command level, At the "early" command level, the
config deck must be made to be correct, At the "boot" command
level, the mpcs (other than the bootload tape mpc and all of the
disk mpcs) nead to be loaded,.

3-3 AN70-01

Within the command level, the config deck (on disk,
disk_config_deck) may have been modified. This is read in, via
establish_config_deck, for the next initialization pass. For
cold boots, the generated config deck is written out instead,

when the pass is over, the states saved at the beginning of
the pass are restored, the system is masked, and we proceed to
perform another pass.

SERVICE PASS

The sequence of events in a service pass differs from ths
normal pass in many ways.

After initialize_faultssfault_init_one runs,
move_non_perm_wired_segs is called to move the segments loaded by
collection 0 te their proper places, thereby utilizing all of the
bootload memory.

[Collection 0O assumes 512K of bootload memory, for two
reasons, First, if BOS and the config deck are nhot present,
there is no easy way of finding out how much memory there is, so
some assumption is needed. Second, the crash handler will have
to run in some amount of memory whose contents are saved on disk.
512K is a reasonable amount of space to reserve for a disk
partition. At current memory and disk prices it is hard to
imagine anyone with a bootload controller with less that 512K, or
a problem with the disk partition.

When setting up the service environment, though, it is
hecessary to move the segments that have been allocated in the
512K limit. It is desirable to have sst_seg and core_map at the
high end of the bootload memory controller. (Gn the one hand,
the controller they reside in cannot be deconfigured. On the
other hand, only the low 256K of memory can be used for 1/0
buffers on systems with IOM's not in paged mode. While we could
just start them at the 256K point, that might produce
fragmentation problems. So the top of the controller is best.)
I¥f the controliler really has 512K of memory, collection 1 paged
segments will be there. move_non_perm_wired_segs takes the
segments that the collection zero loader allocated high (paged
segments and init segments that are not firmware segments} and
moves them to the highest contiguously addressable memory,
hopefully leaving the top of the low controller for the sst_seg
and core_map.]

tc_init sets the number of aptes and itt entries on the
basis of the tcd card,. A normal bce pass really needs no such
entries.

init_sst generates the sst and core map appropriate for all
of memory at the top of the bootload memory. A normal pass

3-4 AN70-01

allocates these tables through normal off-the-slt allocation
{ because the top of the 512k area is filled with temp segs).

Since the service pass does not come to bce command level,
establish_temp_segs, find_file_partition and
load_mst$init_commands are not run,

init_toechold is neot run since uJpon a crash we want to
return to the bootload environment and not to a state in which we
are booting.

init_partitions checks the "part” config cards.

Now, the routine we've all been waiting for runs.
make_segs_paged causes all pagable segments to be paged into the
various hardcore partitions thereby no longer needing memory. We
can thenh run collect_free_core to regain the freed space.

delete_segsttemp deletes the segments temporary to collec-
tion 1, We can then load, link, and run collection 2 (performed
by segment_loader, pre_link_hc and beyond).

EARLY PASS

The early initialization pass is a pass through collection
1 whose jeb is to set up paging and obtain the config deck from
its disk partition sc that a normal initialization pass may be
run which knows about the complete set of hardware.

It starts with init_early_config constructing a config deck
based on assumptions and information available in sys_boot_info.
This config deck describes the bootload CPU, the low 5GS12K of
memory, the bootload I10M, the bootload tape controller and the

beotlioad console. Given this synthetic deck, we can proceed
through scs_and_clock_init, etc. to setup . the environment for
paging. scs_and_clock_init$early fills the bootload CPU port

humber into the config deck, which is how it differs from
scs_and_clock_initSnormal.

scas_init and init_scu (called from scas_init) have special
cases for early initialization that ighore any discrepancy
between the 512K used for the bootload controller and any larger
size indicated by the CPU port logic. :

During the early pass (or, actually during the first "boot"
pass, if an early pass is never run), init_bcebwired sets up
references in bce_data to wired objects. This =zllows
bce_console_io and other friendlier routines to run,

To locate the RPVY subsystem, find_rpv_subsystem looks in

sys_boot_info. If the data is there, it will try to boot the RPV
subsystem firmware (if needed), I+ not, it gueriss the operator

3-5 AN70-01

for the data. I+, later in initialization, the data should prove
suspect (e.g. RPY label does not describe the RPV), control
returns here 1o re-query the operator. The operator is first
asked for & command line specifying the RPV subsystem model and
base c¢hannel, and the RPV drive model and device number. The
operator may request that the system. generate a query in detaitl

for cach item, Cold boot is also requested in the
find_rpv_subsystem dialog. The simple command processor,
bce_commahd_processor_, is used to parse the “"cold" and “rpv"

request lines described above.

The RPV data is Filled into the config deck, and
initialization continues with init_pvt and friends.
init_root_vols is called through its early entrypoint so as to
allow for an error peturn. Errcrs occuring during the initing of
the rpv will cause a re-guery of the rpv data by returning to the
call to get_io_segs.

Firmware is booted in the RPYV controller by
boot_rpv_subsystem, called from Ffind_rpv_subsystem, which finds
the appropriate firmware image and calls hc_load_mpc. A database
of device models and firmware types and other configuration
rules, config_data_.cds, is used 1o validate operator input and,
for example, translate the subsystem model into a firmware
segment nhame.

init_roots_vols checks for the presence of and creates
certain key partitions on the rpv, The "conf" partition, if not
present, is created by tTrimming 4 pages off of the hardcore
partition. The "bece" (bece crash handler, temporary area and MST
storage) and “"file" (bootload file system) partitions are
created, if any is not found, by a call to create_rpv_partition,
This program shuffles the disk pages to find enough contiguous
space at the end of the disk for the partitions.

After running establish_temp_segs and find_file_partition,
the rest of the MST is read. This step is performed during the
"early" pass or whatavenr is the first boot pass.
tape_reader$init sets up tape reading. load_mst reads in collec-
tion 1.2 {config deck sources and exec_coms) into bce file system
objects, collection 1.5 (bce paged programs and firmware images)
into mst area pages leaving around traces for
lvad_met®init_commands (which maps them intoc the bce address
space) and saves collections 2 and 3 on disk for warm booting.
tape_reader$final shuts down the tape. load_met$init_commands
then runs,

The carly or the first boot pass then initializes bce_data
references to paged objects with init_bceSpaged.

An early command level is now entered, using a subset of

the real bce command level commands, This level is entered to
allow editing of the contfig deck,

3-6 AN70-01

After leaving command level, init_clocks is called. This
is the time when the operator sets the clock. Up until this
time, the times shown were random, I+ the operator realizes at
this time that he must fix the config deck, or whatever, he has a
chance to return to the early command level. When the clock is
set, control proceeds,

At this point, early initialization's work is done. The
real config deck is read in (by establish_config _deck), and the
system can rebuild the wired databases to their real sizes.
Interrupts are masked, completion of pending console 1/0 is
awaited, and the slt aliocation pointers are restored to their
pre-cellection-1 values, Control then moves 1o the "boot" pass.

CRASH PASS
The ecrash pass recreates a "boot” environment from which
dumps can be taken and emergency_shutdown can be invoked, It

differs from the "boot" pass only in the verbosity (to avoid
printing many messages at breakpoints) and in the command level
that is reached.

RE EARLY PASS

A re_early pass is run to restore a safe environment
following a failure to boot to the "boot" command level. It is
identical to a "boot" pass except that it uses a saved config
deck known to be good and reaches a "early"” command level.

BCE CRASH PASS

The bece_crash pass is run to restore a safe environment
following a failure to boot the "service" pass. This may also be
the result of a failure of a bce utility invoked at the "boot"
command level. This pass is identical to the boot pass except
that it uses a saved config deck known to be good and reaches the
"bee_crash" command level.

SHUT BASS

The shut pass is run when Multics shuts down, as opposed to
crashing. 1t differs from the boot pass only in that
leoad_disk_mpecs is not run, because it shouldn't be ncessary
(Multics was using the mpcs okay) and because it would interfere
with possible auto ex=c_com operation.

3-7 AN70-01

MODULE DESCRIPTICNS

Bootload Command Environmant modules are not included in
this section.

anhounce chwm.pll

The name of this program means
anhounce_Core_High_Water_Mark. It will announce the extent to
which memory is filled during the various passes of collection 1
when the “"chwn" paramster appears on the “parm" card in the
config deck, Near the beginning of each pass, this program
announces the amount of memory used, based upon information in
the slt. At the end of service initialization, it walks down the
core map entries, looking for pages that are available to page
control and those that are wired. The difference between the
memory size and the total figure given here is the amount taken
up by non-page control pages, the sst for example. As a side
bonus, the before entrypoint announces the usage of
int_unpaged_page_tables; the after entrypoint announces the usage
for unpaged_page_tables.

beot rpv subsystem.pll
boot_rpv_subsystem is the interface between

find_rpv_subsystem and hc_load_mpc, the hardcore firmware leoading
utility. All that it really has to do is find the appropriate

firmwvare segment in collection 1. config_data_ is used +to map
the controller model to a firmware segment name, of the usual
(T&D) form (fw. XXXnnn. Ymmm), The segment and base channel are

passed to hce_load_mpc, and the results (success or failurel are
returned to find_rpv_subsystem,

This is the program that performs reading of the MST by
collections 1 and bevyond. It uses the physical record buffer as
an i/0 area, io_manager is used to perform the i(/¢o, with dow

lists generated within this program,

beotload 1.alm

bootload_1 is the first collection 1 program, called
directly by collection 0, It fills in the stack headers of the
prds and inzr_stkl to initialize the PL/1 environment. It then
calls initializer.pll which pushes the first stack frame,

3-8 AN70-01

collect free core.pll

At the end of collection 1 service initialization, this
program is called to free the storage taken up by the previously
wired initialization segments. It does this by marking all core
map entries for pages still unpaged (judged from the address
field of the sdws of all segments) as wired and marking all of
the rest as free (available for pagingl. It special cases
breakpointable segments to avoid freeing references to
breakpoint_page,

create rpyv partition.pll

To save the effort of creating the new Bootload Multics
partitions by regquiring all sites to perform a rebuild_disk of
their rpv, this program was created,. It creates partitions on
rpv (high end) by shuffling pages about so as to vacate the
desired space. The pages to move are found from the vtoces. The
vtoces are updated +to show the new page location and the volmap
is updated to show the new used pages. This program uses
read_disk to read and write the pages. Mo part of the file
system is active when this program runs.

delete _segs.pbl]

delete_segs is called after the various collections to
delete the segments specific only to that collection (temp segs).
It is also called at the end of collection 3 to delete segments
belonging te all of initialization (init segs). It scans the ast
list for the appropriate segments, uses pc$iruncate to free their
pages (in the hardcore partition) or pc$cleanup to free the core
frames for abs-segs anhd then threads the astes into the free
list. This program is careful not to truncate a breakpoint_page
threaded onto a segment.. : : : -

disk reader.pl]

disk_reader is used by the collection 1 loader (of collec-

tion 2}, segment_ loader, and by the collection 2 1loader,
load_system, to read the mst area of disk. It operates by paging
disk through disk_mst_seg. The init entrypoint sets up

disk_mst_seg unto the first 256 pages of the mst area to be read,
As reguests come in to read various words, they are paged from
this segment. When a regquest comes in that is longer than what
is left in this segment, the remainder is placed into the
caller's buffer, and disk_mst_seg re-mapped onto the next 258
pages, This continues as needed,

3-9 AN70-01

establish config deck.pll

The config deck is stored in the "conf" partition on the
RPV in between bootloads, It runs in one of two ways, depending
onh whether it is setting up for service or bce use. For bce use,
a abs-seg is created which describes the disk wversion.
config_deck still describes the memory version. I+ it is
hecessary to read in the disk version, abs_seg is copied to
config_deck. Likewise, if some program I{(config_deck_edit_ in
particular) wants to update the disk version, abs_seg is again
used, receiving the contents of config_deck. During service,
coenfig_deck is itself both wired an an abs-seg on the disk
partition. This is done by creating an asto whose piws describe
memory. We make the core map entries for the pages occupied by
config_deck describe this aste and the disk receords of the conf
partition, These ocme's are .threaded into page controls list
(equivalent of freecore) providing a valid wired segment, at the
address of config_deck.

£ill vol extents .pll

This is the ring 1 program that obtains, through the
infamous "init_vol loop”, the desired parameters of a disk to
initialize, It is called in initialization by init_empty_root
wvhen performing a cold boot to determine the desired partitions
and general layout desired for the rpv.

find rev subsystem.pll

find_rpv_subsystem initializes configuration and firmware
for the RPV disk subsystem. When available, it uses information
in sys_boot_info,. When that information is not present, the
cperator is queried. The basic query is for a request line of
the form: .

rpv Icc MPC_model RPV_model RPV_device
or
cold Iecc MPC_model RPV_model RPV_device

as described in the MCH.

If the operator makes a mistake, or types help, the
operator is offered the opportunity to enter into an extended,
item by item dialog to supply the data.

The information is checked for consistency against
config_data_, a cds program that describes all supported devices,
models, etc, The mpc is tested through
hc_load_mpc$test_contreoller, to see if firmware is running in it.
If the response is power off, then boot_rpv_subsystem is called
to load firmware. Then init_ecarly_configddisk is called to fill

3-10 AN70-01

this data into the config deck. If a later stage of
initialization discovers an error that might be the result of an
incorrect specification at this stage, control is returhed here
to give the operator another chance,

The operator is also allowed +to enter "skip_load"” or
"skip", as a request before entering the rpv data. This forces a
skip of the firmware loading, regardless of the apparent state of
the mpc.

get ic segs. pli

A scan through the config deck determines the sizes of the
various hardcore i/0 databases which this program allocates.
This program alse fills in some of the headers of these databases
as a courtesy for later initialization programs. The key
determiners of the sizes of the tables allocated are the number
of subsystems, the number of logical channels to devices, the
humber of drives, the number of ioms, etc. get_main is used to
allocate the areas, using entries in the slt to find the memory.
Areas allocated are: the pvt, the stock_segs, the disk_seq,
ici_data, iom_data and io_config_data.

get main.pll

get_main is used to create a segment that is to reside in
main memory. It runs in ohe of two ways, depending on whether
allocation off the slt (slt.free_core_start) is allowed. When
this is not allowed (later in initialization),
make_sdwlunthreaded is used to generate the segment/aste.
pc_abs$wire_abs_contig forces this segment to be in memory.
Earlier in initialization (before page control is active), the
segment is allocated from the free core values in the slt. These
values determine the placement in memery .of the <to be created
segment., get_main allocates a page table for this segment in
cither int_unpaged_page_tables or unpaged_page_tables (depending
on whether the segment will eventually be made paged). The ptws
are filled in and an sdw made. The given_address entrypoint of
get_main can be used to utilize its unpaged segment page table
generation capabilities {(as in init_sst).

he load mpec.pll

he_load_mpc embodies the protocol for loading all MPC's.
It is an ico_manager client. Since the firmware must be in the
low 256K, a workspace is allocated in free_area_l and the
firmware image is copied out of the firmware segment and into
this buffer for the actual 1/6¢. The urc entrypeoint is used to
load urc mpcs, This entry accepts an array of firmware images to
load. It scans the list to determine <o which channels sach

3-11 AN70-01

overlay applies. The extra entrypoint test_controller, used by
find_rpv_subsystem and load_disk_mpcs, tests a controller by
executing a request status operation. The results of this are
used to see if the mpc seems to be running (has firmware in it).

init aste peols.pll

This program is called exclusively from init_sst and really
does most of its work, It builds the four aste pools with empty
astes appropriately threaded, Each aste is filled in with ptws
indicating null pages.

init clocks.pl

_ This program performs the setting of the system clock. It
starts by providing the time and asking if it is correct. If it
is, fine. 1f the coperator says it's not, the operator is

prompted for a time in the form:
yvyyy mm dd hh mm {ss}

The time is repeated back in English, in the form "Monday,
November 15 1982". If the bootload memory is a SCU, the operator
is invited to type “"yes" to set this time (when the time is met),
ocr *no" to enter another time, The time is set in all the
configured memories, to support future jumping clock error
recovery. tn 6000 SC's, the program translates times to SC
switch settings. The program gives the operator time to set the
clock by waiting for an input line. At any time, the operatcer
may enter "abort", realizing that something is wrong.
init_clocks then returns, real_initializer will re-enter the
carly command level in this case.

init_early_config fabricates a config deck based on the
information available after collection zero has completed. The
bootload CPU, IG0M, console, and tape controller are described.
The port number of the bootload CPU is not filled in here, since
it is not easily determined. Instead, scs_and_clock_initSearly
fills it in. Appropriate parm, sst, and tcd cards are
cohstructed, and placeholders are filled in for the RPV
subsystem, so that iom_data_init will reserve enocugh channel
slots, init_early_configbdisk is used to fill in the real values
for the RPV subsystem once they are known.

3-12 AN70-01

fill_vol_extents_, the subroutine used by the user ring
init_vol command, has been adapted to provide the main function
of this program. It provides a request loop in which the
operator can specify the number of vitoces, partition layout, etc.
The operator is provided with a default layout;, including the
usual set of partiticns and the default (2.0} average segment
length, If it is changed, the operator is required teo define at
least the hardcore and bece reguired partitions and (for the
moment}) the bos partition.

init he part.pll

_ init_hc_part builds the appropriate entries so that paging
and allocation may be done against the hardcore partition. It
builds a pseudo volmap (volmap_abs_sed) describing the hardcore
partition (which is withdrawn from the beginning therecof)
allovwing withdrawing of pages from the partition. A record stock
is also created of appropriate size for the partitions.

init titio 11

This program makes sure that the partitions the operator
specified in the config deck are really there. It checks the
labels of the config deck specified disks for the specified
partitions, Disks that do have partitions so listed are listed
as un-demountable in their pvt entries,

o t.p11

The pvt contains relatively static data about each disk
drive (as opposed to dynamic information such as whether i/o0 is
in progress), init_pvt sets ecach entry to describe a disk. No
i/o is done at this time so logical volume information, etc. can
not be filled in. Each disk is presumed to be a storage system
disk, until otherwise determined later,

init_root_vols finds the disks that will be used for
hardcore partitions. It mostly finds the disks from root cards
and finds the hardcore partitions from the labels, For the tpv,
it will alse call init_empty_root, if a cold boot is desired,

call create_rpv_partition, if various required partitions are
missing (MR11 automatic upgrade), and set various pvt entries to
describe the rpv. During the service pass, init_hc_part is

called 1o establish paging (and allow withdrawing) against the
hardcore partition,

3-13 AN70-01

init _scu.pl]

This routine is used within scas_init to init a given scu.
It compares the scu configuraticn information (from its switches)
with the supplied size and requirements. When called for
bootload Multics purposes, the size of the scu may be larger than
that specified (generated) in the config deck without a warning
message. It generates ptws so it can address the scu registers
{see the description in the glossary for the scas). The execute
interrupt mask assignment and mask/port assignment on the
memories is checked here.

init sst.pll

init_sst starts by determining tThe size of the pools,
Nermally, this is found in the sst config card (although init_sst
will generate ohe of 400 150 50 20 if one isn't foundl. For
early and bootload Multics initialization, though, the pools
sizes are determined from the current requirements given in
figures in bootlead_info. The size of the core_map is determined
from the amount of configured memory for normal operation and is
set to describe 512K for early and bootload Multics operation.
The area for the sst is cobtained, either from the top of the
bootload scu for normal operation, or from the 81t allocation
method feor early and bootload Multics operation. The headers of
the sst and core map are filled in. init_aste_pools actually
threads the astes geherated. The pages of memory not used in low
order (or bootload (512k)) memory are added to the core_map as
free., For normal operation, the other scu's pages are also added
to the free list. collect_free_core will eventually add the
various pages of initialization segments that are later deleted.

init vol hesder .pll

init_empty_root uses this program to initialize the rpv.
This routine writes ocut the desired label (which describes the
partitions filled in by fill_vol_extents_), generates an empty
volmap and writes it out, and generates empty vtoces and writes
them out,

initial error handler.pll

This any_other handler replaces the fault_vector "unexpect-
ed fault” assignments, It implements default_restart and
quiet_restart semantics for conditions signalled with info, and
crashes the system for all other circumstances,

W
1

14 AN70~-01

initialize faul 11

initialize_faults has two separate entries, ohe for setting
things up for collection 1, and one for collections 2 and beyond.

This description is for collection 1
{(initialize_faults$fault_init_one). initialize_faults_data
describes which faulis have their fault vectors set to
fim$primary_fault_entry { scu data to pds$fim_data),
fimsignal_entry {scu data to pds$signal_data)l,
fim$onc_start_shut_entry {scu data 1o pdssfim_data)l or
wired_fim$unexp_fault (scu data to prpds$sys_trouble_data) (all
sthers). Special cases are! lockup and timer runout faults are

set to an entry that will effectively ignore them. Derzils go to
fim$drli_entry to handle breakpoints and special drl traps.
Execute faults are set to wired_fim$xec_fault (scu data to
prds$sys_trouble_data). Page faults are set to pagefault$fault
{scu data to pds$page_fault_data). And connect faults are set to
prds$fast_connect_code (scu data to prds$fim_data). Write access
is forced to certain key programs to set values within them.
Access is reset afterwards. These are pointers which must be
known by certain programs when there will be no mechanism for the

programs themselves to find them. An example is the pointers
within wired_fim specifying where scu data is to be stored. The
last +thing done is to set the signal_ and sct_ptr in the

inzr_stk0 stack header so that signalling can occur in collection
1.

initialize faults datas.cds
This cds segment describes which faults go to where so that

initialize_faults can so set them. For collection 1, the major
faults set are: command and trouble to fim$primary_fault_entry

(scu data in pds$fim_data), access violation, store, mme, fault
tag 1, 2 and 3, derail, illegal procedure, overflow, divide,
directed faults 0, 2 and 3, mme2, mme3, mmed to fimEsignal_entry
{scu data to pds$signal_data)l, shutdown, op not complete and
startup to fimbSonc_start_shut_entry (scu data to pds$fim_data)
and the rest to wired_fim$unexp_fault (scu data to

prds$sys_trouble_data).

initializer.pll

initializer consists of only calls to real_initializer,
delete_segs$delcte_segs_init, and init_proc. real_initializer is
the main driver for initialization. It is an init seq.
initializer exists as = separate program from real_initializer
because, after the call to delete init segs, there must still be
a program around that can call init_proc. This is the one,

3-15 AN70-01

The function of this program is to set up the data bases

used by io_manager. These include iom_data and the actual
mai lboxes used in communicating with the iom, The iom cards are
validated here. The overhead channel mailboxes are set for the

descr ibed channels.

load disk mbes.pll

During the "boot" pass, all disk mpcs must have firmware
loaded into them, This is done by load_disk_mpcs. This program
scans the config deck, searching for disk mpcs. It tests each
ohe (with hc_load_mpcktest_controller) to determine a 1list of
apparently non-leoaded disk mpcs. If this list is not empty, it
prints the list and asks the operator for a sub-set of these to
load. bece_fwload is used to perform the actual loading.

load mst.pll

lcad_mst reads in the MS3T. It contains a routine which
understands the format of a MST. This routine is supplied with
various entry variables to do the right thing with the cbjects
read from the various collections. For collection 1.2, the
objects are placed into the bce file system through bootload_fs_.
For collection 1.5, the segments have linkages combined, etc.
just as in segment loader, The objects are placed on disk, in
locations recorded in a table. These are paged bce programs.
Collections 2 and 3 are simply read in as is, scrolling down the
mst area of the "bce" partition using the abs-seg disk_mst_segq.
The init_commands entrypoint uses the table built while reading
collection 1.5, The appropriate bce segments are mappaed onto
disk using the locations therein.

make sdw.pll

make_sdw is8 the master sdw/aste creation program for
collection 1 and beyond. It contains many special cases to
handle the myriad types of segments used and generated in
initialization. It's first Jjob is to determine the size of the

desired segment, The size used is the maximum of <the slte's
current length, maximum length and the size given on a tbls card
(if the segment's name is in variable_tables). Also, an extra
page is added for breakpoints when needed. Given this size, an
appropriate size aste is found and threaded into the appropriate
list, either init segs, temp segs, or normal segs. Wired segs
aren't threaded; they are just listed as hardcore segments, The

page table words are initialized to null addresses. If the
segment is wired and is breakpointable, the last ptw is instead
set to point to breakpoint_page. For abs-segs, this is the end;

3-16 AN70-01

abs segs and other “funny" segs must build their own page tables
and a real sdw to describe them. For a normal segment, however,
the page table entries are filled as follows: an appropriate
hardcore partition to hold the pages is chosen. abs_seg's sdw is
set to indicate this null address page table. The various pages
are touched, causing page contreol <to be invoked to withdraw an
appropriate page against the hardcore partition whose drive index
is in the aste. (abs_seg's sdw is then freed.) make_segs_paged
and segment_loader, the main clients of make_sdw, will then copy
the desired data (either from wired memory or from the tapel)l into
these new (pagable) pages.

make segs paged.pll

make_segs_paged, <tThat most famous of initialization pro-
grams, actually, in a way, has most of its work performed by
make_sdw. make_segs_paged examings all of the initialization
segments, looking for those it can page {(i.e., not wired, not
already made paged, non-abs-segs, etc.). It walks down this list
of segments from the top of memory down, using make_sdw to
genherate an aste, an sdw, and a page table full of disk pages for
it. The sdw is put inte dseg, and the contents of the wired
segment is copied into the paged version. The pages of memory
are then added to page control's free pool The dseg is also
copied with a new dbr generated to describe it,

Breakpointable segments are special cased in twe wayvs.
First of all, when the pages of the o0ld segment are freed,
occurences of breakpoint_page are not. Also, when copyving the
segment, breakpoints set within it must be copied. All of
breakpoint_page cannot be copied since it includes breakpoints in
other segments. Thus, we must copy each breakpoint, one at a
time by hand.

move non perm wired seas.pll

This program takes the segments allocated high addresses by
collection 0 (paged segments and init segments that are nhot
firmware segments) which were put at the top of the 512K early
initialization memory, and moves them to the top of the
contiguously addressable memory, leaving the top of the low
controller for the sst_seg and core_map.

This program depends on the knowledge that the loader
assigns segment numbers in monotonically increasing order to
permanent superviser and Iinit segs, and that the high segments
are allocated from the top of memory down, Thus it can move the
highest segment (in memory address) first, and so on, by stepping
along the SLTE's.

3-17 AN70-01

The copying of the segment can be tricky, though, since not
chly must the contents be moved but the page table must be
changed to reflact the new location. For this, we build abs_segl
to peoint to the new location. The segment is copied into
abs_seg0, We now make the sdw for the segment egual to that for
abs_seg0. The segment is now moved, but we are using the page
table for abs_seg0 for it, not the one belonging to it. So, we
fix up the old page table to pcint to the new location, and swap
back the old sdw. This starts using the new ptws in the old
vlace.

Segments that were breakpointabie (had breakpoint_page in
them) must be special cased not to move the breakpcocint page.

Within initialization, the Iinit_all_consoles entryvpoint of

ocdem_ is called. This entrypoint sets up oc_data to a nice safe
(empty) state. The various console specific parms are found and

saved, The main loop examines all prph opc cards. They are
validated (and later listed if clst is specified). For each
console, a console entry is filled describing it, The bootload
console, when found, is specifically assigned as bootleoad con-

sole. As a last feature, the number of cpus is found, This is
because the longest lock time (meaningful for determining
time-outs) is a function of the number of processors that canh be
waiting for an i‘fo.

ocdem_ also provides for bce a special {function. It
maintains wired_hardcore_data$abort_recuest, set to true wvhenever
the operator hits the request key when this was not solicited (no
read pending). This flag is used by bece_check_abort to
conditionally abort undesired bce operations.

This program simply initializes certain header variables in

the prds. This includes inserting the fast_connect_code, the
processor tag, etc.

ere link he.pll

The linker for collection 2, this program performs a
function analogous to that performed by bootload_linker. It
walks down the linkage sections of the segments in guestion,
loocking for 1links to snap. slt_manager is used to resolve
references to seghments. A definition search is imbeded within

this program,

W
1

18 AN70-01

read disk.pll

read_disk is the routine used to read a page from or to
write a page to disk. The init entry point sets up rdisk_seg as
a ohe page paged abs segment for such purposes. Actual page
reading and writing consists of using disk_control to +test the
drive (unless the no_test entrypoints were used), and then page
control to page the page. For reads, we construct a page table
word describing the page of disk. Touching rdisk_seg then reads
it in, For writing, we generate a null address page table entry.
When we write to it, a page of memory is obtained. By forcing
the core map entry to describe the desired page of disk, unwiring
the page and performing =a pcSclesnup {(force writel, the page
makes it to disk.

read disk label.pll

To read a disk label, we call read_disk_label. 1t uses
read_disk to preform the i/0, Several such reads will be
performed, if necessary. The iabel is wvalidated through a
simple check of label . Multics, label. version and

label.time_registered,

real jnitializer.pll. pmac

real_initializer is the main driver for initialization. It
largely just calls other routines to set things up, in the proper
order.

There are many paths through real_initializer ss described
above. A1l paths set an any_other handler of
initial_error_handler to catch unclaimed signals, which eventual-
ly causes a crash,

"The main path through real_initializer calls collection_l1
{an internal subroutine) multiple times and then passes through

t0o collections 2 and 3. Fach call to collection_1, in the normal
case, "increments" sys_infoScollection_1_phase, thus producing
the main set of collection 1 passes. Various deviations from
this exist. Aborting disk mpc loading resets the phase to
re_early and branches back <to the "early” command level. A
failure when finding the rpv during the "early" pass retries the
"early" pass. The reinitialize command resets the phase to

"early" and then simulates the bce "boot” function, thus making
the next pass become a hew "boot" pass.

When Multics crashes or shuts down, the toehold restores
the machine conditions of bce saved in the toechold. These return
the system to save_handler_mc, which gquickly returns through
init_toehold to real_initializer. The routine collection_]
senses this and returns te the main collection_l calling loop.

3-18 AN70-01

real_initializer keys off the memory_state {determines between
crashing and shutting down) and old_memory_state (state of
crashed memory - determines crashed c¢ollection 1 phase) in the
toehold to determine the pass to run hext.

real_initializer includes a stop-on-switches facility.
pli_macro is used toc assign a unigue number to each step in
initialization. This number can also be used in the future to
meter initialization. RBefore each step in initialization, a call
is made to the internal procedure check_stop. I+ the switches
contain "123"b3 |11 "PNNN’b8, where PNNN is the error number in
binary coded decimal (P is the collection 1 phase, MNN is the
stop number obtained from =a listing), bece is called (if the
tochold is active). :

scas jnit.pll

scas_init 1inits the scas (system controller addressing
segment) . It is the keeper of things cpu and scu. The config
deck is searched for cpu and mem cards which are val idated and
the boxes' switches validated against the cards. The scs$cow
(connect operand words) are filled in here with values so that we
may send connects to the various processors. init_scu is called
to set masks and such for the various scus. The port enables are
set for the ioms, The cpu system contreoller masks are checked.
Finally, if the cpus and jioms do not overlap in port numbers, the
cyclic priority switches are set on the scus.

scs and clock init.pbll

This program initializes most of the data in the scs, In
previous systems, the scs was mostly filled in its cds source.
To support multiple initializations, though, the segment must be
reset for each pass. This program also has the task of setting.
sys_info$clock_ to point to the bootload SCU. Finally, at its
$ecarly entrypoint, it fills in the bootload SCU memory port
number in the config deck, since it used that data in scs
initialization. Initializing the scs consists of initiating data
about cpus and scus.

segment loader.pll

segment_loader is used to load collections 2.0 and beyond,
It uses disk_reader to read records from the MST of disk. The
var ious records from the MST are either collection marks, header
records (denoting a segment) or the data forming the segments.

Given information in the segment header, an appropriately sized
area in wi_linkage$, ws_linkage$, ai_linkage$ or as_linkage$ is
generated. slt_manager$build_entry chooses the hnhext segment

number (either supervisor of initialization) for the segment and

3-20 AN70-01

creates the slt entry. make_sdw creates an sdw an the page table
and allocates disk space in the hardcore partition for the

segment. With read/write access forced for this new (pagable)
segment, the segment is read from disk, Access is then set as
desired in the header record. We loop in this manner until we

encounter a collection mark when we stop.

slt manager.pll

This is a relatively simple program.
slt_manager$build_entry looks at the header read from an MST and
builds =2 sl1t entry. The header defines whether this is a

supervisor or an initialization segment (which defines from which
set of segment numbers (superviscory start at 0, initialization
start at 400 _octal) it is given), what names to add to the name
table, and whether this segment has a pathhame which needs te be
added to the name table (so that init_branches can thread them
into the hierarchy). While it is building the entry, it hashes
the names in the same mannetr as bootload_slt_manager.

slt_manager$get_seg_ptr uses this hash list to search for the
segment name redquested.

sys info.cds

sysa_info is described under data bases.

Egg_ne.aggr_;_ul

tape_reader uses boot_tape_io to read MST tape records. It
is capable of reading several tape records and packing them into
a user supplied buffer. It validates the tape records it reads
for Multics-ness, performing the (old) reading re-written record
error recovery mechanism, :

tc init.pll

te_init is run in two parts, the second called part_2 run
in collection 2. FPart one, just called tc_init, allocates an
appropriately sized tec_data {see the description of
tc_data_header, above) given the supplied number of aptes and itt
entries, The workclass entries are initialized to their
defaulis. Workclass 0 is set up for the initializer as realtime,
etc. Everyone else is put initially into workclass 1. The aptes
and itts are threaded into empty lists. Initial scheduling
parameters are obtained from the schd card. The length of the
prds is set (either default or from tbls card). The stack_0_data

segment (which keeps +track of the ring 0 stacks given to
processes when they gain eligibility) is initialized. Apte
entries for the initizlizer and idle (bootload cpu) are created.

3-21 AN70-01

Finally, memory is allocated for the pds and dseg of the various
idle processes {(which woh't actually be started until

te_initspart_2).

3-22 AN70-01

SECTION 4

THE BOGTLOAD COMMAND ENVIRONMENT

Bootload Multics must provide a certain number of
facilities when the storage system is not available. Examples
are system dumps to disk, disk saves and restores , interactive
hardcore debug (patch and dump), and automatic crash recovery.

INITIALIZATION

There are two ways that the command environment is entered.
When an existing system is booted from power-up (cool boot), the
command environment is entered to allow config deck maintenance
and the like. When the service system crashes, the command
environment becomes the crash recovery environment that overseces
dumping and automatic restart. A Full cold boot is a&a special
case of a cool boot.

The heart of the bootload Multics command environment (bce)
runs mostly wired, The paged segments are paged temp segments,
managed by get_temp_segment_ and friends, for such purposes as
gedx buffers and active function expansion. The bece file system
is paged. Also, some bce command programs are paged, through the
grace of load_mst. These are mapped onto an area of the bce
partition. bce does not use the storage system, nor the hardcore
partition.

Certain special programs are run so as to initialize bcs.
These are: init_bce to enable the basic facilities of switches
and areas and such; find_file_partition to enable the bootload
Multicse file system; establish_temp_segs to provide paged temp
segments; and, load_mstdinit_commands to allow references to
paged bce programs. load_mst was described under the bootload
Multics initialization pass in collection 1.

ENVIRONMENT AND FACILITIES

The basic facilities of the command environment are:

4-1 AN70-01

a free area. free_area_1 is initialized with define_area_,
and a pointer left in stack_header.user_free_area and
stack_header. system_free_ares, so that allocate statements
with no "in" qualifiers work. get_system_free_area_ () will
return a pcinter to this area. This area is used for global
data needed between commands. Each command normally finds
its own local area, normally on a paged temp segment.

standard input, output and error entries that hide the
distinction between conscle and "exec_com” input. These are
entry variables in the cds program bce_data.cds, They are
hardly ever called directly, as more sophisticated
interfaces are defined atop them. The eontry variables are
bce_databget_1line, bece_datasput_chars and
bce_dataterror_put_chars, get_chars is not sensible in the
console environment, for the console will not +transmit a
partial line. The module bce_console_io is the usual target
of the entry variables. It uses ocdcm_, oc_trans_input_ anhd
oc_trans_output_. bce_data also contains the peointers
get_line_data_ptr, put_chars_data_ptr and
error_put_chars_data_ptr which point to control information
needed by the target of the entry variable. The pair of
values of an entry variable followed by the data pointer is
what constitutes & bce switch. A pointer to this switch is
passed around much as an iocb peointer is passed around in
Multics. Both ioa. and formline_. understand these bce
switches so that normal calls may be made.

bece_qguery and bce_duerybyes_no. Each takes a response
argument, ioa_ control string, and arguments, and asks the
guestion onh the console, An active function interface is
provided.

bce_error is the 1local surrogate for com_err_, used by
various non command level programs. It does not signhal any
conditions in its current. implementation. com_err_- and

active_fnc_err_ simply call bce_error appropriately when in
bce.

a command processor, The standard command_processor_ is
used to provide a ssu_-like suksystem facility. The various
command programs are called with a pointer to

bece_subsystem_info_, of which the arg_list_ptr is the impor-
tant information,

a reqguest line processor, Any program that wants to parse
lines using standard syntax (without quotes, parentheses, or
active functions, for now) calls bce_command_processor_ with
the command line, a procedure that will find the command,
and a return code, find_rpv_subsystem, for example, calls
it with an internal procedure that checks that the command
is either "rpv", "cold", "help*, or “*", and returns the
appropriate internal procedure to process the command.

4-2 AN70-01

These procedures use the usual cu_ entrypoints to access
their arguments.

The paged temp segments bootload_temp_1 .. bootload_temp_N.
These are each of 128/N pages long, and mapped as abs-seg's
onto a part of the bce partition. N is established by the
number of such segments listed in the MST header (and
computed by establish_temp_segs). These segments are
managed by get_temp_segments_ and friends,

A primitive file systemn. bootload_fs_ manages a simple file
system mapped onto the "file"” partition on the rpv. This
file system can hold config Ffiles or exec coms. It is
writable from within Multics service. The objects in the
file system have a max length of 128/N pages, matching that
of the temp segments, and have a single name. :

The standard active function set.

Disk /0 facilities. Several exist. Some utilities call
(read write)_disk,. If they do not need the disk test that
this routine performs (as when accessing the (already)
trusted rpv), they call the no_test versions of these
entrypoints. Another mechanism is to build a paged segment
onto the desired disk area, normally via map_onto_disk.
This mechanism trusts the built in mechanisms of page
control (and traffic control disk polling) to ensure that

the i/¢ is noticed. A final mechaniam is to call
dectisbootload_(read write), which allows the queueing of
multiple i0os to different disks. This is used for high

volume operations, such as pack copying.

CTI1O

Various Multics facilties are not present within bce... Some.

are listed below,

E

No operations upon the file system hierarchy are allowed
(except for indirect references by bce_probe to segments in
the Multics image).

Normal segment truncation/deletion/creation is not allowed.
The ptws must be manually freed,

Segments may hot be grown (no withdrawing of pages is
allowed]}., They must be explicitly mapped onto the desired
free area of disk or memory.

No iox_ operations are allowed. Pseudo-iocb's do exist,
though.

4-3 AN70-01

S Bnly a finite (and small) number of paged/wired work areas
can exist. They also have comparatively small lengths.

% Dynamic linking is not done. References to cocbject names are
done with slt_manhager$get_seg_ptr.

3 Wakeups and waiting for wakeups can hot be done, A program
must loop waiting for status or use pxss facilities.

* Timers (cput and alrm) may not be set, Programs must loop
waiting for the time,

¥ There =re ne ips signals se ne masking (s involved. The
real question is the masking of interrupts (pmut$set_mask).

X Any routine that itself, or through a subsidiary routine,
calls bce_check_abort (which includes any output operation),
must be prepsred to be aborted at these times. Thus, they

‘must have a pending cleanup handler at these times, or
simply have nothing that needs to be cleaned up.

MODULE DESCRIPTIONS

bce abs seqa. pll
This relatively uninteresting program maintains a list of
abs-segs built during an initialization pass. This is done so

that real_initializer can free them, en masse, when it needs to
reinitialize before another pass.

bece alert.pll

Console alert messages {(mostly for . bce exec.com's) are

prodUced by bece_alert. It simply appends its arguments,
separated by a space) into onhe string which it prints through
bece_datatconsole_alert_put_chars, This prints the message with

audible alarm.

bce alm die. alm

‘bce_alm_die wipes out the bce toehold and enters a "dis"
state.
bece appending simulation.pll

All references to absolute and virtual addresses within the

saved Multics image are performed by bce_appending_simulation.
It has multiple entrypoints for its functions.

4-4 AN70-01

The "init" entrypoint must be called before all others, It
initializes certain purely internal variables, for later offi-
ciency. As an added bonus, it sets the initial dbr for the
appending simulation based on whether it is desired 1o examine
the crash image or bce itself.

The entrypoint "new_dbr"” sets a new dbr for the simulation.
This entrypoint takes apart the dbr supplied. The main purpose
of this entrypoint is to find this new address space's dseg, Sso
it can evaluate virtual addresses, This fetching of the descrip-
tion (aste/page table/sdw)} of dseg can be done using the absolute
fetching routines of bce_appending_simuiation and by manually
disecting sdws and ptws, This entrypoint must alsc find the
core_map, if present, which is needed by the virtual entrypoints
to find out-of-service pages.

The "(get put)_(absolute virtual)" address entrypoints
actually perform the fetching or patching of data, They take the
input address and fetch or replace data in pieces, keeping each
piece within a page, This is done because different pages
desired may reside in totally different locations.

"get_absolute” and "put_absolute" work in relatively simple
ways. They examine the address to determine its location. Some
low memory pages will be in the image on disk and fetched through
the paged abs-segs multics_(low highl)_mem. Other pages are in
memory [(above 512k, These are fetched through the abs-seg
abs_seg0 which this program slides onto a 256k block as needed,
References to absolute locations in examine-bce mode always use
the abs_seg0 approach to fetch everyvthing from memory. These
entries keep a page_fault_error handler to catch disk errors, a
store handler to handle memory addreses not ehabled at the
processor ports and an op_not_complete handler to catch refernces
to scu's who have our processor disabled, .

Before wvirtual addresses may = be fetched/patched, the

"mew_segment” entrypoint must be called. The purpose of this
entrypoint is to fetch the sdw/aste/page table for the segment
for later ease of reference, This is done by wusing the

"get_virtual®™ entrypoint, referencing dseg data given the previ-
ously discovered description of dseg (in the "new_dbr"
entrypoint). For efficiency in fetching the sdw (meaningful for
the dump command which calls +this entrypoint for every segment
number valid in a process and ends up fetching null sdws), a dseg
page is kept internal to this routine.

Virtual addresses are manipulated by the "{get
putl_virtual" entrypoints. These entrypoints break apart the
request into blocks that fit into pages. For each page of the
segment that it needs, it examines its ptw (found in the segment
description found and provided by the "new_segmenti" entrypeoint)
to determine its location. Pages flagged as in memory are
obtained by the absolute entryvpsint. Pages on disk can be easily

4-5 AN70-01

manipulated by mapping rdisk_seg onto the page and paging it. I+
it is in hneither catagories, something is either wrong or the
page is out of service. For out of service pages (pages with i/o
in progress upon them), the "correct" page is found (the page at
the source of the i/0) and this manipulated. If this is a put
operation, it is necessary to replace this page in both locations
(both memory and the disk page in use) to make sure that the
effect is felt. Also, for any put operation, the proper page
table word must have its modified bit set sc¢ page control hotices
the modification,

bece check abort.pll

bece_check_abort contains the logic for possibly aborting
bece functions upon operator request. When called, it checks
wired_hardcore_data$abort_request, which is set by ocdcm_ whenev-
er an unsolicited request is hit. If this bit is set,

bce_check_abort prompts the operator with "Abort?" to which the
response determines the degree of abort. Both this query and the
response i/o are performed through bce_datalconscole_[whateverl to
force them to appear on the console. A response of "ho" simply
returns. "was" and "request" signhals sub_request_abort_, which
is intercepted by the bce_exec_com_ and bce_listen_, or by a bce
subsystem. Entering "command” signhals request_abort_, handled by
bece_exec_com_ and bce_listen_ to abort a subsysten. Entering
"all” performs a non-local goto to <sub-sys info>.abort_label,
which returns to bece_listen. at top level.

bce_check_abort is called on the output side of
bce_console_io and other output oriented bce i/0 modules, Thus,
most operations will notice guickly the operator's intent to

abort, However, any program that can enter an infinite
computational loop (such as the exex_com processor trying to

follow an infinite &goto . & label loop) must call
bece_check_abort within the loop to provide a way out.

bce command processor .bll

This routine is a scaled down version of
command_processor_. It does not support active functions or
iteration sets. Written as such, it does not need the various
work areas that command_processor_ heaeds and can run completely
wired. 1t separates the command line into the usual tokens,
forming an argument list of +the various argument strings. It
uses a routine supplied in its call to find an entry variable to
perform the command found. It is used in various very early

initialization programs like init_clocks and find_rpv_subsystem
(which obviously cannot page) as well as some bootload Multics
programs that can deal with the simplicity and wish not to power
up command_processor_ .

4-6 AN70-01

bce console o, pll

bce_conscle_io is the interface to the conscle dim ocdom_.
[ts function is to perform translation appropriate to the console
({oc_trans_input_ and oc_trans_output_)J and to call
ocdem_Spriority_io to perform the i/o. bce_console_iobget_line
is the routine normally found in the entry variable
bce_data$get_ltine and bce_console_io$put_chars is the routine
hormally found in bce_data$put_chars and
bee_data$error_put_chars,

bece continue.pll

bce_continue restarts the interrupted image. It flushes
memory and uses pmut$special_bce_return to invoke the tochold.
As it passes, it resets all rtb flags in the flagbox except
ssenb. This is so that the next return to bce does not show the
current rtb flags.

Also present in this module is the bos command, which
flushes memory and uses pmut$special_bce_return to invoke the BOS
toechold.

bce data.cds

This cds segment contains data pertinent te the command
environment activities of bce. It holds the entry and data
pointers used to perform ifo on the pseude switches
bce_databget_line, bce_datsput_chars, bce_dataerror_put_chars
and bce_dats$exec_com_get_line. It keeps track of the current
exec_com level, through bce_datadcommand_abs_data_pitr (part of
the exec_com_get_line switch). It also holds the <tTop level

subsystem info for the command level in bce_data$subsys_info_ptr.

bece die.pll

This module just checks to see if it is okay to die, which
is actually performed by bce_alm_die.

bece display instruction .pll

One of the bce_probe support utilities,
bece_display_instruction_ displays ohe (possibly multi-word)
instruction, It uses op_mnhemcnic_ for its information. The

result is to print an instruction and to return the number of
words dumped.

4-7 AN70-01

bece display scu .pll

bece_display_scu_ is another bece_probe utility. It displays
the scu data found in machine conditions supplied to it.
bece_display_instruction_ is wused to interpret the instruction

words from the data.

bce dump . pll

The disk dumping facility of bce is found in bce_dump. It
is actually a rather simple program but with a few tricky special
decisions made within it. After parsing ths command line
arguments, it figures out the process and segment options to use.
These options are merged together in a hierarchical fashion; that
is, options applying to all processes apply to eligible; all that
apply to elgible apply to running, etc. The dump header is
filled in with machine state information from the toechold. The
dump header on disk is flagged as invalid, An abs-seg {(dump_sed,
created by establish_temp_segs) is built to run down the dump
partition during segment placing. Given this out of the way,

dumping can start. Each apte is read from the saved image
{ through bee_appending_simulation). For cach, the segment
options applying to each are determined. Given the segment

limits in the dbr for this process, each segment is examined to
see if it meets the segment options. Mest of the options are
self-explanatory. When it comes to dumping non-hardcore seg-
ments, though, it is desired tc dump any hierarchy segment only
once. This is done by keeping a pseudo bit-map of the sst, where
cach bit says that a segment has been dumped. (Since the
smallest possible aste in the sst is 18 words, there can be at
most 258K/16 astes. Given an address within the sst from a
segments’ sdw, we assume that any aste that crosses the mod 16
boundary near this address describes the same segment as this and
heed not be dumped again.) If a segment is to be dumped, we read
pages from its end, looking for the first non-null page. All
pages from the beginning of the segment up to and including this
page are appended to the dump. {The dump_seg abs-seg is adjusted
to indicate these pages.) wWhen all is dumped, we update the
header and write it out.

bce error.pll

A simplified form of com_err_, bce_error simply fetches the
text of an error message from error_table_. and constructs an
error message which is printed through bce_databerror_put_chars.
The com_err ehtrypoint is used to format a com_err_ style
message, used by com_err_ when called during initialization.

4-8 AN70-01

bece esd.pll

An emergency shutdown of Multics is initiated by bce_esd.
It uses bce_continue to invoke the toehold to restart the image.
However, before doing this, it patches the machine conditions in
the toehold to force the image to transter o
emergency_shutdownl 0, to perform an esd,

bce exec com .pll

bece_exec_com_, along with bce_exec_com_input, form the bce

eaguivalent of version 1 exec_gom's. bece_eoxec_com_ is & merging
of functions found in exec_com with those found in
asbs_io_S$attach, It finds the ec and builds an appropriate

ec_info and abs_data structure to describe it. The ec attachment
is made (bce_data$exec_com_get_line) is made to refer to this ec

invocation, after saving the previocus level. Commands are read
from the ec through bce_exec_conm_input and executed through
command_processor_%$subsys_execute_line. nce bee_exec_com_info

returns a code for end of file, the ec attachment is reverted.

bece exec com input.pll

bce_exec_com_ input performs the parsing of exec_cons, It
is a pseudo i/0 mocdule, in the stvle of bce_console_io$get_line.
It is called in two possible cases. The Ffirst is to fetch a
command line for execution by bce_exec_com_. In this case, the

switch is bce_databtexec_com_get_line. When an S&attach appears in
an ec, bce_exec_com_input will have attached itself (by making
bce_datadget_line point to itself) and then calls to
bece_datatget_line will call bece_exec_com_input for a line where
the switch (bce_data$get_line) will point to the abs_data for the
ec that performed the &attach. The basic code is stolen from
abs_io_vi_get_line_. The major changes are to delete
non-meaningful operations like &ec_dir.

bece execute command .pll

This routine is the caller for the various bce command
programs, It is passed as an argument to, and is called, from
command_processor_%$subsys_execute_line. It is given a peinter to

an argument list generated by command_processor_, as well as the
request hname. bce_execute_command_. uses bce_map_over_reguests_

to scan through bce_request_table_ to find the entry to call. It
understands the difference in calling between Multics routines
(like active functions stolen from Multics) and bce routines. 1t

also understands the flags indicating within which command levels
a command is valid.

4-9 AN70-01

bce cad.pl

Firmware is loaded into various mpcs by bce_fwload. Its
objective is to find, for each mpc desired, the set of firmware
images needed for it. he_load_mpc does the actual loading. For
a normal (disk, tape) mpe, this involves just finding the mpc

card which shows the model. The model implies the firmware
module needed (config_data_$mpc_x_names. fw_tag). The desired
module is found through slt_manager. {Firmware images for disk

were part of cellection 1 and are wired (they needed to be in
memory to be able to load the rpv controller); other images were
part of paged collection 1.5.) For urc contreollers, the main
firmware can also be derived from the mpc's mpc card, However,
it Is necessary to check all prph cards to find peripherals
accessible threough that urc, For each, and depending on the urc
channel it is attached to, the appropriate firmware overlay is
found and put in the correct slot in the list of firmware to
load.

bece get flacbox.pll

This module performs the bce {get set) _flagbox
commands/active functions. It is basically a wversion of the
corresponding Multics routine, modified to make direct references
to the flagbox instead of a2 gated access,

bece get to command level . pll

The routine to get from real_initializer into command level
is bece_get_to_command_level. It builds a bce_subsystem_info_
structure which it passes 1o bece_listen_. I+ examines the
current state to determine if the initial command should be null
{manual entry), the flagbox bece command (hormall) or probe
(breakpoint entry)l. Since it . is the routine below
real_initializer on the stack, it is the routine to which control
must return so that real_initializer can be returned <to to
perform boot and re_initialize functions. Thus, boot and
re_initialize are entrypoints within this program. re_initialize
just returns, setting the collection_1_phase to "early"” so that
real_initializer will end up running another boot pass. This
will cause bootload Multics to pick up any changes that have been

made to the config_deck. boot scans the arguments which are
inserted inte the intk card. It then returns.

Another bce_probe utility, This routine is used to deter-
mine the 1length of an instruction, so that it may be correctly
relocated. It differs from the real probe's version in that it
does not attempt to dezl with xec instructions.

4-10 AN70-01

bece list reguests .bll

This program implements the list_requests (1r) bootload
Multics command. It does a simple minded walk down the bootload
Multics request table, using bkce_map_over_requests_, with a
printing routine to print the request names and the description
within the table. It understands the dont_list flag, as well as
understanding flags indicating at which levels a given command is
valid,

bece listen .pli

bce_listen is a simple loop that reads a command line from
bce_data$get_line and executes it through command_processor_
(using bce_execute_command_ to actually execute the request). It
contains the sub_request_abort_ and request_abort_ handlers to
work with the coperation of bce_check_abort.

bce _map over reguests .pll

Programs that wish to walk down the bootload Multics
request table (bce_list_requests_ and bce_execute_command_) call
bce_map_over_requests_ with a routine that is called on each
entry in the table. As such, the format of the table itself is
known only to this routine.

bece name to segnum .bll

This bce_probe utility maps segment numbers to names. It
searches the silit and name_tables from the saved image.
Entrypoints exists to convert a segment number to a hardcore
segment name (bce_segnum_to_name_), a segment pointer to a
virtual name (bce_segptr_to_name), and a segment hame - to a
segment nhumber (bce_name_to_segnhum_).

bee probe.pll . pmac

The main portion of bce's preobe support, bece_probe contains
the main drivers for most of probe's facilities. It contains the
request line parser, address and value parsers and most of the
functional routines.

bece_probe starts by examining its arguments and its envi-
ronment to determine its cperating mode. It defaults to
examining the breakpoint image if the flagbox indicates a break,
to examining the crash image, when at bce_crash or crash command
levels or to examining bce otherwise. Given its operating mode,
it initializes the appending simulation package accordingly and

4-11 AN70-01

cstablishes a few (initial constants. If in break mode, it
determines the point of break for operator information.

bce proceeds to read request lines from the console. The

first "string” in the line (or partial line left, if this is a
multiple request 1line) found by internal routine get_string
becomes the regquest name, This is looked up in a table and

dispatched through a "case" statement.

REQUEST ROUTINES

The before reguest finds the desired address. It is
validated to ensure that it is virtual and that the segment named
is breakpointable. Finding the breaskpoint page for this segment,

this request looks for an empty break slot. The original
instruction is relocated there (bece_relocate_instruction_) and
replaced by a transfer to the break block, The break block
consists of a “"drl -1" instruction, which causes the break,

followed by the relocated instruction, followed by a transfer
back to just after the original instruction in the code. This
break block and the transfer to the block are patched into the
segment such that failure at any time will not damage the
segment.

The continue request validates itself and calls
bce_continue,

The dbr reqguest fetches its arguments, Constructing a nhew
dor, it calls internal routine new_dbr.

The display request gets and validates its arguments. It
loops, fetching (through bce_probe_fetch_) at most a page at a
time to display (since we only allocate a one page buffer for the
fetchl. The internal routine “display" displays the data in the
specified mode. Since data to be displaved may cross page
boundaries, any data "display"’ cannot display (because it would
need data from the next page to fill out a line)l is "scrolled" in
front of the page buffer and a new page worth's of data fetched.
This continues until the last page is fetched.

The let request finds the address and sets up for patching
of same. It then loops, finding values from the request line,
converting them to binary. These are appended unto a word based
buffer. When all are fetched, they are patched into place.

The list_requests request simple prints a canned list of
reguests.

The mc request gets its address and uses bce_display_scu_.

The name redguest uses bce_segnum_tc_name_.

4-12 AN70-01

The proc request fetches the desired apte from tc_data in
the image. A new dbr value found therein is passed to internal
routine "new_dbr".

The quit request quits.

The reset request performs the inverse of the before
reguest, After validating its address (for wvirtualness,
breakpointability, erc.), it undoes the effect of before, in
reverse order to prevent damage to the segment.

The segno reduest uUses bce_name_to_segnum_.

The stack reguest validates its argument. Given the word
offset therein, it decides whether to start from the specified
stack header or frame. The needed data is fetched and displaved
in interpreted form. Each stack pointer fetched is validated,
hot only to insure that it is a valid pointer, but to insure that
stack frame loops do not cause bce probe loops.

The status reguest uses the internal routine "status" to
display breakpoints set, It simply validates its argument and
decides between listing breakpoints for a segment versus listing
breakpcinted segments.

INTERNAL RCOUTINES

check_no_more_args insures that ho more arguments appear ohn
the request line; that is, that we are loocking at a semi-colon or
new-1line,

display displays data in a specified mode, [t determines
the bit sizes to display, alignments, etc. Its only trick is
when processing the end of a buffer full that doesn't fill a
display line. This causes it to not finish its display. Its

caller (the display request) then appends what was not displayed
to the front of the next buffer full so that it may appear in the
next group.

function is used to parse functional references, such as
*reg{ralr)®. function extracts the arguments to the function
(whose identity was determined by its caller), builds an argument
list from these strings, and calls the function,

get_address contains the logic to parse a bce probe

address. It fills in the structure, bce_probe_data$address to
define the current address. It special cases the dot (".")
forms, checks for virtual forms (those with a "I" in them),

notices absolute addresses (single octal number) and uses func-
tion for the pseudo-variable type of addresses (reg and disk).

4-13 AN70-01

Internal routines to get_address, called by function, build the
address structure for these types.

get_string finds the next "string" in the request line,
Its basic job is to pass whitespace and find string delimiters.

get_value finds a let request value. It looks for ascili
strings (values starting with a quote character), vwhich it must
parse separately (since guoted strings confuse the notion of

string contained in get_string), finds virtual pointers (strings
containing "1"), and finds the various numeric types.
line_error is used to print error messages. Besides

printing the given message, opticonally with or without the
current reguest line arg or error code, it also aborts the
current reguest line.

nhew_dbr is the counterpart to the nev_dbr entrypoint to the
appending package. 1t exists to set up references to a few
popular segments (slt and name_table) whenever the dbr changes.

pass_white passes vhitespace.

status displays breakpoint status. Since break blocks are
zeroed when hot 1in use it is possible to find them easily. For
any segment listed in the image’'s slt as being breskpeointable,
status fetches the last page (that which holds the breakpoints)
and examines each break block. Any with a valid
original_instr_ptr are displayed.

bece probe data.cds

Information communicated between probe and its support
routines is done so through bce_probe_data. This cds contains
the current value of "." (current address), as well as pointers

to bce_appending_seg_info structures describing key segments in
the image used by the support routines.

bece probe fetch .pll

This support utility +to bce_probe fetches data, given a
length and the current address (in bee_probe_data$address) . It
simply uses bce_appending_simulation for absolute and virtual
address and read_disk for disk addresses, Register addresses
must be specially handled by the caller.

bece guery.pll

bece_query is a simple-minded counterpart to command_query_.
It uses bce_databSput_chars to print a question and

4-14 AM70-01

bce_datasget_line to read an answer, The main entrypoint accepts
any answer and bce_query$yves_no accepts only yes or ho which it
returns as a bit. This routine is called with no prompt by some
routines who find its return result (char (x)) to be better that
the buffer and length and return length returned by
bce_datafget_line,

bce ready . pll

bce_ready prints the bce ready message:
bce (BCE_COMMAND_LEVELY TIME:
It has a nnl entrypoint to print the message without new-line (as

a prompt), The normal entry prints the line (for ready message
within exec_com).

bece relocate instruction .ptl

This is another support routine for bce_probe. It differs
from the standard Multics wversion in that it does not allow
relocation of "xec" instructions. {Service proke allows this by

attempting to examine the target of the xec, something bce_probe
does not attempt.)

bece request table .alm

The bootload Multics request table is a normal ssu_ reduest
table built with ssu_reguest_macros. Each entry contains a
peinter +to the routine that performs a request, the name and
short nhame of +the request, and a short description of the
reqguest. The actual threading of the entries is KkKhowh only to
bce_map_over_requests_, which performs the walking down of this
table, The last three flags in each rq_.data entry is used to
specify whether the command is valid at the three main bce
command level types! early, boot and crash.

bece severity.pll

This is +the bce counterpart to the Multics severity

command/active function, It does not work as the Multics routine
does, however. Instead, it knows the set of programs that
recognize a severity indicator. For the desired oneg, it calls

the severity entrypoint thereof to find the severity.

4-15 AN70-01

bee_shutdown state.pll

The current shutdown state of the storage system (rpv
label. shutdown_state) is found by this routine. It uses
read_disk to find this information.

bce state . pll

This command/active function simply returns the name of the
current bce state.

bootload disk post.pll

_ This routine is used in conjunction with the high volume
disk facility of bce (dctl$bootload_(read writel)]. Whenever a
disk i/o queued through this means is posted for completion, it
is done so through bootload_disk_post, called by either dctl or

disk_control. The result is posted in a structure described by
bootload_post_area. incl.pll. This area must be maintained by the
caller.

bootload fs .pll

bootload_fs_ contains variocus routines to act upon the
bootload Multics file system. The format of the bootload Multics
file system is knownh only to this program. The file system is
kept in a single abs-seg (bootload_file_partition), mapped (and
paged) off the bce partition on the rpv. A two page header at
the start of the partition contains a directory of 174 entries
{max that fits) listing the nams, size and placement of the file
within the segment. Also present is a free block map. Files are
allocated as a contiguous series of blocks (64 word blocks)

within the segment. The segment is automatically compacted by
this routine when necessary, Entrypoints to this routine are:
lookup (find the length of a file given its name), list

(allocates a list of file names and sizes within a user supplied
area), get (copies a file into a user supplied buffer), get_ptr
{returns a pointer and length to a given file (hecs_$Sinitiate?)),
put (allocates area within the file system for a file and copies
a user supplied buffer into it), put_ptr (allocates an area
within the file system large enough for a given file and returns
a pointer teo it) (both put and put_ptr take an argument allowing
for the deletion of a file with the same name as the one
desired), delete (deletes a directory entry and frees the space
used), rename (renames a file (does not allow name duplication)),
and init (clear out the bootload file system entirely),

4-16 AN70-01

bootload fs cmds .pll

This program simply calls bootload_fs_. to perform the
functions of the bootload Multics commands print, list, delete,
rename, and initialize. This routine supports the star and equal
conventions for most of its operations through match_star_name_
and get_equal_hnhame_.

beootload gedx . oll

bootload_gedx is a modified version of gedx. it differs in
its use of file system operations (bootload_fs_)} and its use of
temp segs.

config deck data .cds

The config deck editor's source of config card descriptions
is found in config_deck_data_. This cds provides labels for the
fields, numbers and types of fields, etc.

confia deck edit .pll

This is the program that edits config decks, It calls
qedx_ to perform +text editing, specifying the caller_does_io
option. With this option, gedx_ calls config_deck_edit_ to
perform read and write operations on buffers. Any read/write not
to the config deck uses bootload_fs_. Reads/writes to <config
deck> (buffer 0) use the config deck conversion routines, This
program makes use of config_deck_parse_, the routine that can
convert from ascii (possibly labeled) form to and from binary
form. The conversions are performed using a set of tables
(config_deck_data_) that describe the names of the fields, the
required and optional number thereof, the data types of the.

fields, etc. Also allowed by the conversion routines are cards
of tvpes nhot recoghizable starting with a dot (.) which are not
val idated. This is to allow for future expahsion and site

formatted cards.

When a command line argument is supplied, the file
specified is accessed (bootload_fs_Sget_ptr) and the object
obtained is supplied to the internal routine write_config_deck
which sets this new deck,

establish temp segs.pll
Whenever bece needs (paged) temp segments, it calls
get_temp_segments_. get_temp_segments_ gets these segments from

the pool of segments bootload_temp_1..N. esteablish_temp_segs
divides the temp seg pages =llocated in the bee partition (128

4-17 AN70-01

pages) up into the N segments (N is determined from the number of
such segments listed in the mst header). The paged segments are
built as abs-seg's onto this area of the determined length. This
size is saved in sys_info$bce_max_seg_size. establish_temp_segs
also creates the bce segments multics_{low high)_memn, used to
access the saved image, dump_seg, used 1o access the dump
partition and disk_config_deck, used to access the rpv (real?)
copy of the config_deck (as opposed to our runnhing copy in
config_deck).

find file partition.pll

find_file_partition maps the bootlecad Multics file system
abs-seg (bootload_file_partition) onto the bce partition on the
rpv in much the same manher as establish_config _deck maps the
config deck. 1t alse calls bootload_fs_$init to begin accessing
the segment. I1f bootload_fs_ states that the file system is bad,
find_file_partition will call bootload_fs_$init again, this time
to clear out the file system.

init bece.pll

init_bce initializes the bootload Multics command environ-
ment features reqguired for future programs. It is called early
in initialization. At its wired entrypoint, it sets up

free_area_1 as an area, setting the inzr_stk0 stack header to
point to it so that allocates without an area work correctly and

so that get_system_free_area_ also works. This routine also
initially sets bece_data$get_line, bce_datatput_chars and
bee_dataterror_put_chars to their appropriate entry values
{bce_console_iosget_line, bece_console_iosput_chars and
bece_console_iosput_chars, respectively) s0 that calls to
bce_guery, bece_error and especially ioa_, will work, At its

paged entrypoint, it finishes up references to paged objects, in
particular, to the exec_com routines.

4-18 AN70-01

SECTIGN 5

CRASH HANDLING

Bootload Multics must be able to save the salient state of
a crashing system and set up the command environment for dumping
and other intervention.

EARLY CRASHES

Crashes in collection 0O or the early initialization pass of
collection one should be very rare. Since the system uses a
generated config deck, the set of possible operator inputs is
small, and it is possible to do a much more thorough job of
testing than can be done with BOS or service initialization,
However, hardware prcblems will happen, and software bugs will
sneak through. To cover these cases, collecticen 0 includes a
crash handler that can write a core image to tape, prompting the
operator for the drive number.

THE TOEHOLD

~ The toehold, tochold.alm, is an impure, wired, privileged
program that resides in a khown location in absolute memory
{240000) . It has entrypeints at the beginning that can be
entered in one of two ways: with the execute switches processor
function, or by being copied inte the fault vector, The toechold,
therefore, is entered in absolute mode. It must save the 512K
memory image off to disk, and then load in the crash handler.

The memory image includes the complete machine state. All
absolute addresses, chanhel programs, port and channel numbers,
and other configuration dependent information is stored into the
toehold by a PL/! program, init_toechold.pll. Thus the alm code
does not have to khow how to do any of these things, which
simplifies it considerably.

The toehold starts with the various entry seguehces; ohe

for manual entry, one for Multics entry (which differs from
manual enhtry in that the means of entry is 1to executie the entry

S5-1 AN70-01

through a fault vector enhtry,; it is necessary to update the
machine conditions in this case to pass the instruction that
caused the fault vector execution) and one for restarting the
machine image. The crash entries save the entire machine state.
This is done under the protection of the memory_state so that the
machine state is nhot overwritten if the toehold is invoked again
after being invoked after a crash. An internal routine performs
i‘o given a set of dow lists (built by init_toehold), After the
memory is saved and the crash handler read in, the machine state
of bce is restored. (1t was saved by save_handler_mc.) This
causes a return into save_handler_mc, which quickly returns to
init_toehoid, which quickly returns to real_initializer who
quickly starts the appropriate crash initializastion pass.

Bn the restore side, the system is masked and the internal
routine called to read back the saved image. The machine
conditions are restored from the toehold fwhich 1is not
saved/restored during the memory shuffle).

MODULE DESCRIPTIGNS

fim.alm

fim is listed in the crashing set of modules in as much as
that it contains the bce breakpoint handler. A bce breakpoint
consists of a "drl -1" instruction. fim's drl handler special
casecs these (in ring Q), saves the machine state in
breakpoint_page (after advancing the ic to pass the drl instruc-
tion) and calls pmutSbce_and_return. It alsce performs the
restart from a breakpoint.

init toehoid.pll

This pll program constructs the channel programs to save
and restore the 512K memory image, and fills it and other data
inte the text of toehold. After saving the bce image (crash
handler) on disk, it calls save_handler_m¢ to save the current
machine state of bce in the toehold, When bce is invoked upon a
crash, the bece restore operation will return to the return in
save_handler_me which will return to this point in init_toehold.
init_toehold notices this and quickly returns to resl_initializer
who will perform the desired crash initialization pass.

save handler mc.alm

The save_handler_mc program, called from init_toehold right
after it saves the crash handler to disk, saves in the toehold
the maching conditions appropriate for bce. Besides register

5-2 AN70-01

contents and such, it saves the return address to the return in
save_handler_mc.

5-3 AN70-01

SECTION 6

COLLECTIGN 2

. The main task of collection 2 is to make the storage system
accessible. Along its way, it loads collection 38 into the
storage system and places the appropriate entities from collec-
tions 1 and 2 into the hierarchy. The sub-tasks are to enakle
segment control and directory control, The real traffic control
is also started. Since collection 2 runs in a paged environment,
it does not have the memory restrictions that collection 1 had.
This 1is the reason why it is in a different collection from
collection 1.

CORDER CF EXECUTION

The operations performed in collection 2 are described
below.

initialize_faultssfault_init_two is called teo change the
fault vectors into the desired values for normal service opera-
tion, now that the code for such has been loaded.

Initialization now runs performing several intermingled
functions, All hardcore segments must be created now, before
traffic control isg Fully initialized. This is so that the
address space inherited by the new processes (idle in particular)
encompasses all of hardcore,

tty_buf, tty_area and tty_tables are genherated through a
call to fnp_init. They won't be needed at this time but must be
allocated before tc_initspart_2.

Unique id (uid) generation is initialized by a call to
getuidéinit. This is required before segments in the hierarchy
(in particular, >sl11 and >pdd) can be created.

init_vtoc_man allocates and initializes the

vioc_buffer_seg. We are therefore eligible to read and write
(and create) vioces,

6-1 AN70-01

cdobm_seg is allocated and initialized to an area by

dom_mansinit. init_scavenger_cdata allocates the scavenger_data
segment, used by the volume scavenger, The page control data
base, dm_journal_seg_, used to control synchronous page opera-
tions (data management), is initialized by init_dm_journal_seg.
dir_lock_segq, used to keep track of directory lockings and
waitings thereupon, is initialized by dir_lock_init, Again,

these are created before tc_initspart_2 is run.

After this point, changes to the hardcore descriptor
segment may not be reflected in idle process and hproc descriptor
segments. This is because init_sys_var, which sets various
system variables;, uses the number of supervisor segments present
{which is the expected total set thereof) to set the stack base
segment humber in various variables and in the dbr.

We can now run tec_init$part_2, which creates the idle
processes and starts multiprogramming. At this time, only the
bootload cpu will be running but the idle process will be enabled
to run on it.

With mnmultiprogramming active, syserr_log_init can create
the syserr hproc {after it makes the syserr partition accessi-
ble). We then log a message to the effect that this was donhe,

The activation of segment control, which began with the
creation of the sst, continues now with the creation of the
system trailer seg (str_seg) by init_str_seg. If the astk (ast
track) parm was specified, init_sst_name_seg initializes the
sst_names_ segment with the names of paged hardcore segments,

The entrybounds of hardcore gates are set via a call to
init_hardcore_gates, which also stores linkage pointers into the
gates for a reason described under the description of the
program.

We can finally make the volumes of the rlv accessible for
storage system activity by a call to accept_rpv. This sets up
the volume and vtoc maps anhd stocks for the drives, allowing
vtoc_man and the page creation/destruction functions to work
against the paging region of the disks.

The logical volume table (lvt) is initialized to describe
the riv by init_1lvt,

bad_dir_ and seg_fault_handlers are now set up as we are
about to access our first directory. init_root_dir makes the
root directory known in the Initializer's process, creating it if
this is a cold boot, The functions performed here are those that
will allow future hierarchy segment references through segment
control (kst creation, in particular). ket_util$Sgarbage_collect
is called just to make the kst neat. At this time, we can
consider segment control tec be active, We can call wupon it to

6-2 AN70-01

create, delete or whatever. The presence of the root will allow
these activities by virtue of the special casing performed by
segment control when it discovers a segment with no parent (the
root).

The hardcore entities which need to be placed inte the
hierarchy (deciduous segments) are done so by init_branches,
which also creates >sl11 and >pdd appropriately. These entities
will be needed when we try to leave ring zero. Of course, other
required segments are needed; these are the contents of collec-
tion 3.

init_stack_0 then runs to create the various stack_0's to
be shared between eligible processes, now that it has a place to
put them,

delete_segsstemp can now huh, deleting collection 2 tempo-
rary segments, This ends collection 2.

MGSDULE DESCRIPTIONS

accept fs disk.pll

A disk is accepted into the file system by accept_fs_disk.
It validates the pvte for the disk. The label is read. (If this
is a pre-MR10 pack, satvage_pv is called to convert the vtoc
region for stock operations.) The pvid and lvid of this disk are
copied into the pvt, finally making this data valid. The volmap
and vtoc map are initialized and the stocks made active by
init_volmap_seg. If this fails, the volume salvager is called
and we +try again. The partition map from the label is checked
against the volmap to make sure that no partition claims pages in
the paging region. The updated disk label is writteh ocut as we
exit. _

accept _rpv.pl ;

The volumes of the rlv are accepted for storage system use
by accept_rpv. First, the various disks that have hardcore
partitions are validated, from their labels, to be part of the
rlv, We then scan the intk card to see if the rpv or rlv desire
salvaging; these facts are stored in the pvt. If the rpv needs
salvaging, this is done now (salvager$volume_salvage). For
information purpeses, we log (or print, if the hcpt parm was
specified), the amount of the hardcore partition used on the
various disks. accept_fs_disk is called to accept the rpv in the
normal way. wired_shutdown is enabled as the storage system is
considered to be enabled. Appropriately, make_sdwbreset_hcp is
called to prevent further attempts to allocate from the hardcore
partition, Contrary to the name (accept_rpv), the entire rlv is

6-3 AN70-01

accepted next by calling the salvager, if necessary, and
accept_fs_disk for the other rilv volumes, We can then clear
salv_datasrpv to keep the salvager from salvaging the rpv later.

create root dir.pll

Dur ing a cold boot, the root is initialized by
reate_root_dir. It locks the root, setting its uid to all ones.
The various dir header variables are set, pvid, master_dir flag,
etc. A directory style area is set up along with a directory

hash table. The dir is then unlocked and we exit.

create reoot vtoce.plil

create_root_vtoce creates a vtoce for the root directory
during a cold boot. The vtoce created describes the root as a
master directory of appropriate length, max imum qguota limit,
created as of the current time, primary name of ">", etc.
vtoc_manh is used +to allocate space in the vtoc map for this and
to write it out.

dom man.pll

dbm_man manages the dbm_seg (dumper bit map) for the volume
dumper. The init entrypoint used during initialization allocates

and initializes the dbm_seg. Its size is determined from the
number of disk drives configured and allocated out of the
hardcora partition by make_sdw, This reoutine changes dbm_seg

from its MST status (an abs_seg) to being a real segment.

dir lock init.pll

The segment used to keep track of directory lockings and
waitings thereupon, dir_lock_seg, is alleocated and initialized by
dir_lock_inid. The size of this segment is based upon
max_max_eligible (the maximum number of readers of a lock) and
sys_info$max_tree_depth (maximum lock depth one can hold). The
dir_lock_seg is converted from an abs_seg to a real seg, paged
out of the hardcore partition. Initially, ten dir_lock's are
allocated, threaded appropriately.

fnp_init initializes the data bases used in Multics-fnp
communication. tty_buf is allocated in wired memory either with
a default size or a size specified by the ttyb parm. Var ious
header variables are set up. If a tty trace table is called for
by a config parm, it is allocated in the tty_buf free_space srea.

6-4 AN70-01

tty_area is initialized as an empty area. tty_tables also has
its header filled in and its ztable_area set to ah empty area,
The config file is scanned for fnp cards; cach one sets the
fhnp_config_flags appropriate to it. The hardware fixed
dn355_mailbox for each fnp is zeroed. fnp_info is set. Finally,
io_managers$assign is called to assign each fnp with an interrupt
handler of dn355%interrupt.

getuid.aim

getuid is the generator of uid's (unique identifiers) for
storage system objects, 1t operates by effectively incrementing
toc_datatid under its own form of lock, The init entrypoint used
during initialization stores an initial uid "seed" in tc_data$id
generated from the clock wvalue, :

init branches. pl]l

The program that places the appropriate hardcore segments
into the hierarchy, creating »>sl1 and >pdd as it goes, is
init_branches. To start with a clean slate, it renames the old
>process_dir_dir and >pdd to & screech hame. append then creates
a new >process_dir_dir (added name of >pdd) which is then

initiated. The per_process sw is set on for this dir, It is
given the maximum quota possible. The old >system_library_1
(>sl1) is also renamed and a new ohe created and initiated,

Access is set to s for %.%.% on it. We then walk down the
various sst pools looking for segments to have branches created.
The sst entry leads us to the slt entry for the segment to be

placed in +the hierarchy. create_branch is called (running
recursively) to create a branch for the segment (it creates all
hecessary containing directories and a vtoce for the segment). A

pointer to the parent directory and its aste is found. The aste
for the hardcore segment is threaded inte the parent entry. - The
per_process Ssw, max_length and uid fields are set in the aste.
It is +then threaded out of the hardcore 1lists and inte the
appropriate segment list. The vtoc index provided for the
segment (found in its entry in the parent directory) is copied
into the aste so vtoc_man will work. The entrybound of the
segment is placed into the directory entry. If aste tracking is
going on, a sstnt entry is added. Its vioce is updated, putting
the correct information from the initialization created aste into
the vtoce. The parent directory is then unlocked and terminated.

The per_process sw is turned on in the aste for >pdd so
that [t can propogate down to sons activated off it. We walk
down >pdd to propogate this switch, The maximum length of the
slt and name_table are explicitly set, not trusting the slte
fields for them. A maximum guota is reset oh >pdd. The default
acl term of sma *.SysDaemon is removed from >pdd and the acl term
of sma Initializer.SysDaemon.z is added. >gumps is created and

6-5 AN70-01

salvaged if needed. The hierarchy is now properly created and
active.

init dm journal sea.pll

init_dm_journal_seg initializes the page control data base
dm_journal_seg_ used to control synchronous page operations.
This routine parses the dbmj card. This card describes the sizes
of the various journals needed. fnce the size of dm_journal_seg_
is found, its memory {(wired) is obtained from make_sdw. Var ious
header parameters (pool thresholds, pages held, events) are
filled in, The various journal entries have their time stamp
initialized to tc_datatend_of_time. The various page_entry's are
threaded into a list. After this, sstédm_enabled is set for the
world to know,

init bhardcore gates.pll

init_hardcore_gates performs a variety of functions to make
those things which are hardcore gates into future usable
entities, It recognizes anything in the slt with ring brackets
of 0O, O, nh as a hardcore gate. It finds within the text (given
the definitions) the segdef .my_lp and stores there {(having
forced write access) the linkage pointer for the gate. This is
done because, the gate, known in outer rings by a segment number
different from the hardcore number, would not be able to find its
linkage by indexing into the lot by its segment number as nhormal
outer ring programs do, Given the segdef .tv_end found for the
gate, the entrybound is set in the gate's sdw. Finally, the ring
brackets for restart_fault and return_to_ring_0_ are set from

their slt values =so0 that these scgments may be used in outer

rings with their hardcore segment numbers. (return_to_ring_0O_
has a pointer to it stored as the return pointer in the stack
frame by signaliler, _return_to_ring 0_ finds restart_fault

through a text imbeded pointer.)

init lvt.pl1
The logical volume table is initialized by init_1ivt, It

sets up the header and then uses logical_volume_managerd$add to
add the entry for the rlv.

init processecr.alm

A processor is inited by init_processor. The init
entrypoint stores the absolute address of various variables into
init_processor itself fFfor execution within absolute mode when

started on other cpus. When run to start a cpu, it performs some
collection of tests, enters appending mode, fiddles with associa-

6-6 AN70-01

tive memories and cache, informs pxss that it is running (through
its apte), initializes pds and prds time values, sends out a
conhect to preempt the processor and then opens the mask to allow
interrupts. (We will be interrupted at this time (by the conhect
we sentl, This will cause us to find our way back to pxss to
schedule something to run on this processor.) The idle loop for
a processor is contained within init_processor following this.
The idle loop Fflashes a moving pattern in the aq lights when it
is on the processor. At this time, x4 contains the number of
eligible processes, x5 the term processid and x6 the number of
ready processes for the sake of checking system operation.

init root dir.pll

The root directory is made known by init_root_dir. We
start by checking te see if this is a cold boot. If so,
create_root_vitoce is called. The root vtoce is read, An aste is
obtained for the root dir (64 pages), which is initialized from
the data in this vtoce. pc is used to fill the page table.
search_ast hashes in this aste. We can now begin the process
that will allow future segment accessing activity through segment
control. The Initializer's kst is built, by initialize_kst. The
pathname "associative memory"” used to map segment numbers to
pathnames is initialized by pathname_am$initialize. makeknown_
is called to make the root (uid of all ones) known (found in the
kset). I+ this is a cold boot, this segment just made known must
be initialized to a directory by create_root_dir. Finally, this
directory is salvaged, if necessary.

init scavenger data.pll

The segment scavenger_data is initialized by
init_scavenger_data.

init sst name sea.bll

The sst_names_ segment is initialized by init_sst_name_seg
whenever the astk parm appears. 1t walks down the slt, looking
for segments that are paged with page tables in the sst. For
each, it copies the primary name into the sst_nhames_ segment.

init stack O0.pll

The wvarious ring =zero stacks (stack_0) are created by
init_stack_0. Since a process cannot lose eligibility while in
ring 0, the number of processes that can have frames down on ring
zero stacks is equal to the maximum pessible number of eligible
processes (max_max_eligible). We thus create this many ring 0O
stacks which are used by eligible processes, The various

6-7 AN70-01

stack_0.nhn segments are created in >sl1. They are, in turn,
initiated, truncated, and prewithdrawn to be 16k long. The vtoce
is updated accordingly. The stack header from the initializer's
ring zero stack is copied into the header of these stacks. The
stack is then terminated. The acl for Initializer is removed.
The first stack slot is claimed for the Initializer; the current
stack being put into the slot in stack_0_data.

init str seg.pll

init_str_seg initializes the system traliier segment
{str_seg) into a list of free trailer gntries.

Now that all of the hardcore segments have either been read
in or created, we can how stand back and observe hardcore, The
next supervisor segment number (mod 8) becomes the ring 0 stack

segment number (stack base) which is stored in
active_all_rings_data$stack_base_segho and hcscnt. We make sure
that the dsegs for the idle processes will be big enhough to
describe these segments. The stack base is stored in the dbr
value in the apte. Various other system variables are set:

sys_info$time_of_bootload, sstépvhip (physical volume hold table
pointer), sst$rgover (record quota overflow error code, which is
moved to this wired place from the paged errcor_table_), and
sst$checksum_filemap (depending on the nock parm),

init volmap seg.pll

init_volmap_seg initializes a volmap and vtoc map segment
allowing us to reference such things on a given physical volume.
It starts by acquiring an aste for the volmap.seg (for the
segment abs_seq) and one for the vtoc header (for the segment
volmap_abs_seg) (vtoc map) which are then mapped onto the desired
areas of the disk. (This is done under the ast lock, of course.)
The free count of records is redetermined from +the volmap. The
same is done for the vtoc map. If this is a member of the riv
and volume inconsistencies were previousiy found and the number
of free vtoces or records is below a certain threshold, a volume

salvage is called for. If we will not salvage, we can accept the
disk. Use of the hardcore partition on the disk is terminated
through a c¢all to init_hc_partdterminate_hc_part. Vtoc and

record stocks are allocated. The pointers in the pvte to these
stocks are set as are various octher status and count fields. The
number of free records and the base address of the first record
in cach stock page is computed. The dumper bit map from the disk
is allocated into the dbm_seg (previously created by
dem_mans init_map). Finally, under the ast lock, we clean up the
abs_seg and volmap_absa_seg segments (free their sdws),

6-8 AN70-01

init vtoc man.pll

The vtoc_buffer_seg is initialized by init_vtoc_man. This
routine acguires enough conhtiguous memory for the
vtoc_buffer_seg, determining the number of wvtoc buffers either
from the config vtb parm or from a default. Var ious vtoc buffer
headers are initialized here.

initialize faults.pll

initialize_faults was described earliier, under collection
1. The entry point fault_init_two, used by collection 2, sets up
fault vectors for normal (file systeml operations. It prevents
timer run-out faults during operation through a call to pmut$ldt.
initialize_faults_data is used to set the main faultis. Faults
set are: command, trouble, segment and 1inkage to
fim$primary_fault_entry (scu data to pds$fim_data)l, store, mme,
ft1, lockup, ipr, overflow, divide, df3, mme2, mme3, mmed and ft3
to fimdsignal_entry (scu data to pds$signal_datal, and fault
number s 26 to 30 to wired_fim$unexp_ fault {scu data to
prdstsys_trouble_datal. Access violations are routed specially
to fimbaccess_violation_entry which maps the acv faulit into our
sub-faults, Timer runouts are sent to wired_fim$timer_runout
{whe bpnormally calls pxss}) with the scu data stored in
prds$fim_data. Parity goes to fimbparity_entry, Finally, we set
up the static handlers for the no_write_permission, isct_fault
and lot_fault conditions,

kst util.pll

kst_util performs utility functions with regard to
maintaining the kst. The garkbage collect entrypeoint cleans up
the kst by terminating any segment not known in any ring or a
directory with no active inferiors. : :

start cbu.pll

start_cpu might best be described as a reconfiguration
program, It is used during initialization t¢ start a idle
process on each configured cpu (at the asppropriate timel. When

starting the bootload cpu in collection 2, it Ffills in the apte
enhtry for the idle process for the ¢cpu in question. Some more
variables in init_processor are set {(centreoller_data). A simple
call out to init_processor$start_bootload_cpu can be made.

syserr log init.pll

The syserr logging mechanism is made operative by
syserr_log_init. It creates the segment syserr_log which it maps

6-9 AN70-01

onto the log partition, wherever it is. A consistency check is
made of the partition; if the check falils, the partition is
re-inited, The syserr hproc (SyserrlLogger.Daemon.z)'s ring O
stack (syserr_daemon_stack) is initialized. The hproc is created
by create_hproc$early_hproc with a stack of syserr_daemon_stack,
dseg of syserr_daemon_dseg, pds of syserr_daemon_pds, and proce-
dure of syserr_logger. A fast channel is defined for communica-
tion through syserr_data to the hproc. Logging is now enabled.

tc init.pll

tc_init was described earlier to set up snd initialize
tc_data. te_init$part_2, in collection 2, starts up
multiprogramming by creating the idle processes. This entry can
only be called once the initialzer's dseg is completely filled in
by all those who read or create hardcore segments, Various
variables in template_pds are filled in which are applicable to

the idle processes. For each configured processor, a copy of
template_pds and the initializer's dseg is made into appropriate
entries in idle _dsegs and idle_pdses. The stack_0 for these
processes is made to be the prds for the given processor. The
"initial process for the bootload processor {(the initializer
himself) is created by threading in an apte specifying
init_processor as an initial procedure. [t is placed in work

class zero. tcm is initialized to indicate only this one process
running. Various polling times are set for when polling becomes
ehabled as we start multiprogramming. init_processorsinit sets
up the rest of the state. We can now call start_cpu to start the
bootload cpu idle process,

6-10 AN70-01

SECTICN 7

COLLECTION 3

The main task of collection three is to read itself into
the hierarchy. Collection three consists of those programs that
are necessary to reach ring one in the initializer's process and
to be able to perform a reload function (and other maintenance
functions). A few extraneous functions are also performed in
collection three,

ORDER OF EXECUTIGCN

Caollection three starts with its main function:
load_system is called to read the remaining mst entities into the
hierarchy. At this time, the mst reading function is shut down.

io_config_init initializes the data in io_config data for
use in later econfiguration activities, foi_init is called to
prepare for outer ring usage of physical devices.

tc_init$start_other_cpus starts up the other processors.
We NOW consider collection three done and set
sys_info$initialization_state to 4.

real_initializer finally finishes, returning to
initializer. initializer can then delete init segs through
delete_segs$init, real_initializer being part of onhe,.

Initialization then finishes by a call to init_proc, to call out
to ring one command level.

MODULE DESCRIPTIGONS

init o 11

init_proc is the first program run in ring zero in a normal
process. It calls out to the initial procedure for a process in
the outer ring. For the Initializer, the initial_proc is made to
be system_startup_. The setting of the werking dir is skipped,

7-1 AN70-01

since we can't be sure it's there yet. The ring one stack is
created explicitly, by makestack. system_startup_ is initiated.
call_outer_ring_ is called to "return" out +to ring one (outward
calls are not allowed) to transfer to system_startup_.

io_config_data is initialized by io_config_init. (It was
allocated memory and its base pointers set up by det_io_segs.)
The tables are initialized in the order: iom and mpc, channetl

and then devices (as it indeed must bel,

Filling in the iom and controller entries is easy; they are
one for ohe with iom and mpc cards.

A walk is made of prph'cards twice, The first pass is made

to fill in the channel entrigs. Each prph card is found. If the
peripheral is a disk or tape (has an mpc), we also find a chnl
card (if present). Each channel is added to the channel list.

The internal routine controller_idx_from_chanid looks up the
index intoe the controller array for the controller owning this
channel (via ioi_configsfind_controller_card). The internal rou-
tine iom_idx_from_chanid finds the corresponding iom array entry.
After all of this, each channel is linked to its base physical
channel via calls to ioi_configsfind_base_channel.

A second pass over prph cards is made to fill in the device
entries. For each device, we start by finding its physical
channels. (This is done by walking down all the channels (from
the prph and c¢chnl cards), looking up the base channel (from the
channel entries) and making an array of the physical channels

found (template_pchan_array). If any of these channels is
configured (it was marked configured above because its iom was
ohl, the device becomes configured on, The device entry is

filled in from the card. For disks and tapes, though,. we add a
device entry for the controller and ohe each for each drive.

ioi init.pld

ioi_init sets up the various ici_ data bases. It walks the
config deck, allocating group table entries for each channel
group. Each device whose channel is accessed through a control-
ler has its group entry flagged as a psia. The device table

entries and channel table entries are allocated from information
on the prph card. Then, for each chnl card, the group table
entry corresponding is found and the channel table entries

allocated from the information on the chnl card. The base
logical channel for each group is found, The group entries are
then traversed %o find storage system disk channels, All

non-storage system disk channels are assigned to ioi_ through

7-2 AN70-01

i o_manager. As a final gesture, the ioi_ page tables are setup
(ioi_page_tablesinit).

ioi page tapble.pll

The init entrypoint of ici_page_table is called during
initialization to set up the io_page tables segment. It starts
by abs wiring the segment as one page (initially) and zeroing it.
The header is initialized. Sixty-four word page tables are
allocated and initialized within this page, as many as will fit.

load system.pll

Collection three is loaded into the hierarchy by
load_system. It reads the mst source (disk_reader) looking for
segments, For each, init_branches$branch is called to create the
branch (init_branches is described under collection two)l. The
appropriate acl is set up, given the mst information. The
segment cohtents are copied into the created branch. If the

Initializer does not have write access to the final segment, the
acl is cleared of this acl entry.

tc init.pll

tc_init was described ecarlier. The entrypoint
start_other_cpus, starts cpus other than the bootload cpu at the
end of collection three (after their interference won't matter)}.
A prds for the various non-bootload processors (s created and
entry-held, The pds and dseg for the other cpu's idle processes
was already created so we can now call start_cpu on this new cpu
as we would normally during reconfiguration.

7-3 AN70-01

SECTION &

MECHANISMS

This chapter describes certain tricky and not so tricky
mechanisms used within initialization to get things done, Also
included is a lecok at the mechanism by which the various parts of
the supervisor come inte operation.

HARDCORE SEGMENT CREATION

There are various ways that segments come into being within
the hardcore. These mechanisms are usually aquite distinct from
the normal methed of creating a segment within the hierarchy
{appendfifoo) .

The first group of segments that are created are those
nheeded by collection zero. Collection =zero itself is read in in
absolute mode; no segments exist other than those hardware
supplied. To save collection zero the problem of generating
segments for its use in absoliute mode, its segments are generated
by macros within template_slt_.alm. These macros genherate not
ohly the slt entries for collection zero segments (and various
segments at fixed absolute memory addresses); they also generate
the page tables and the segment descriptor words for the
segments, A much simpler program in absolute mode moves these
page tables and sdws (the dseg) to appropriate places and loads
the dbr (also generated by tTemplate_slt_). Thus, these early
segments come cquickly and magically into being. All of the
segments described by the template_slt_. are data segments with nho
initial content except for bound_bootload_0 itself, which was
loaded into the correct memory address by the bootload tape
label, and toehold, by virtue of being the first part of
bound_bootload_O,

The second group of segments to come into being are the
collection one segments loaded by collection =zero. These seg-
ments are created through a mechanism imbeded in bootload loader
and bootload_dseg. When the segment header (actually a slit
entry) is read from the MST, the need for a segament of a certain
size is called for. Values in the slt header keep track of the

&-1 AN70-01

extent of memory allocated. The type of segment (permanent
"unpaged" or not) determines from what end of memory the space

will be obtained. A page table of appropriate size is
constructed in the proper area (either the segment
unpaged_page_tables for permanent "unpaged"” segments or
int_unpaged_page_tables for temporary or to be made paged seg-
ments) . A new sdw pointing to this page table is tacked onto the
appropriate end of dseg (low segment humbers for permanent
segments, high for temporary or init segs}). With write access

set on in this sdw, the segment contents can be loaded from tape
into the memory area. Proper access is then set in the sdw. The
segment is now existent.

Collection one creates certain data segments that are wired
and contiguous, The mest obvious is the sst, These are created

by the routine get_main. get_main might be considered the
counterpart of the collection =zero segment creation mechanism
when called in collection one, It alseo allocates memory space

from values in the slt header, A page table of appropriate
length in one of the 1twoe unpaged page table segments s
cohnstructed and a sdw fabricated to this page table. The caller
of get_main forces this sdw into dseg and performs the appropri-
ate associative memory clearing function.

The other type of segment created by collection one is a
paged segment. There are two cases of this, The +irst is &
paged segment that i3 to be mapped against a previocusly defined
area of disk. This is done when we want to access a partition or
part thereof, as when we want to read the config deck from disk.
To do this, make_sdw is called, specifying that we want an sdw
for an abs-segd. make_sdw finds us an aste of asppropriate size
and threads it inte the hardcore lists, but senses the abs-seg
switch and does not sllocate pages or whatever, The cailer of
make_sdw builds its own page table within the aste obtained by
calling ptw_util_$make_disk to make each page table word point to
the correct disk @ record. The pvtx of the desired disk is
inserted into the aste, Thus, references to this segment (whose
sdw points to the page table in this aste) will wake up page
control who will page in the proper pages. This mechanism
appears in several places; the desired way of generating such a
segment is to call map_onto_disk.

The second type of paged segment created by collection one
(or two for that matter) is a segment paged off the hardcore
partition, In this case, allocation of pages is done by page
control, make_sdw is called as before, but, this time, it not
only creates an aste for the segment, but it finds space for it.
A disk with a hardcore partition with enough free space to hold
the segment is selected. This pvtx is put into the aste. As an
added bonus, since such segments will not have trailer entries,
the trailer pointer in the aste is set to the hardcore segment
number (for those programs that need to map the hardcore aste
list entries to slt entries). The page table words are set to &

&-2 AN70-01

nulled state. make_sdw then touches each page, causing page
control, when the page fault occurs, to withdraw a page from the
partition. {init_hc_part created a vol map and record stock that
page control can use which describes only the hardcore parti-
tion.) With the segment now in existence, the caller of make_sdw
can how 1cad the segment. For collection ohe or two, this
involves either initializing the data segment or copying in the
segment contents read from the mst,

When collection two needs a wired contiguous data space, it

calls get_main also. In this case, though, get_main calls
make_sdw$unthreaded which will obtain an aste and sdw and page
space. pe_absSwire_abs_contig is then called 1o wire this

segment into contiguous memory pages. A paged segment to be
mapped onto a particular area of disk is created as described for
collection one.

Hardcore seaments that need to be placed into the hierarchy
{deciduous segments) are so placed as follows. append is called
to create a branch, This creates a vtoce for the segment and
makes active, creating If necessary, all parent directories.
Normally, segment conhtreol activities would then create an aste
for this being created segment which would be threaded as a son
of the parent directory's aste, In this initialization case,
though, the aste for the new segment already exists, We hand
thread this sste inte the normal segment lists and thread it as a
son of the parent directory's aste. The directory entry for this
segment created by append gives the vtoc index of the vtoce for
it. By placing this vtocx into the old aste for the new segment,
vtoc_man can make the vtoce for this now deciduous segment
reflect the placement of this segment in the hardcore partition
(where it was allocated during hardcore initialization). The
segment is now properly active and accessible from the hierarchy.

The initialization of the hardware and configuration infor-
mation pertaining to it (basically scs (and also iom_datal) is a
little understood process, To better understand the method of
initialization, it is necessary to start with an understanding of
the operation of the hardware on which PMultics runs, This
description pertains to the DPS-8 hardware series. The descrip-
tion for the Level-88 series is similar but is not included.

Interconnection of Multics hardware
A Multics system consists of a set of system cohtrol uhits

{SCU's), central processing units (CPU's) and input/output
multiplexors (ICM's).

&-3 AN70-01

A SCU controls access to memory. Each SCU owns a certain
range of (absolute) memory. Any active unit (a CPU or an [10M)
that requires access to memory does so by requesting the access
from the SCU that owns the given range of memory.

A CPU performs the actual computations within the systenm.
It operates by requesting instructions and data from the appro-
priate SCUs, operating upoh them, and placing the results into
appropriate locations in SCUs,

An I6M performs input and ocutput to physical devices, It
reguests data from SCUs to send to devices and takes data from
devices, storing it intc SCUs,

I6Ms and CPUs are not directly connected to one anhother,.
The only method of communication between active modules is
through a SCU. The connection of modules in a Multics system is
therefore something like the following.

I 16M A | I IeM B |
i N 1
| PN I
I MEM A 1---1 SCU A | I SCUB I---1 MEM B |
] N |
I FAN |
|l CPU AL | CPUB I

The crosses indicate that both [I0Ms and both CPUs connect
to both SCUs: the CPUs and 10Ms are not themselves connected.

The active modules (CPUs and I[0Ms) have up to four ports
that go to SCUs, These are referred to as the memory ports of
the active module in guestion. The 3CUs have up to eight ports
that can go to active modules. These are referred to as the
active module ports of the SCU or just simply as SCU ports.

All CPUs and 10Ms must share the same layout of port
assignments to 3CUs,. Thus, if memory port B of CPU C goes to SCU
D, the memory port B of all other CPUs and [0Ms must go to SCU D,
All CPUs and I10Ms must describe this SCU the same; all must agree
in memory sizes, Also, all SCUs must agree on port assignments
of CPUs and [0Ms. Thus, if port 3 of SCU C goes to CPU A, then
port 3 of all other SCUs must alsoc go to CPU A,

8-4 AN70-01

Configuration of Multics hardware

The wvarious hardware modules need varying amounts of
configuration description information with which to run.

CPU AND I10M HARDWARE CONFIGURATION

The CPUs and [I0Ms regquire access to main memory. They
resolve their own internal concept of memory address (virtual or
io page table) into an absolute main memory address, This
address must describe a location in one and onhly ohe memory store
unit, which itself must be connected to only one SCU, The I10M or
CPU must determine which SCU owns the memory location desired,
and supply that SCU with the address relative to its base of the
location desired. .The CPU and I16M do this with the memory
configuration information known to them by configuration switches
and changed under software control.

The configuration data known to the processor (at the
hardware level) is found via the rsw instruction with operands of
1 and 2, which can be obtained by calling pmutSrsw with these
operands, The format of +the data returned is described in
rsw.incl.pll and also shown below.

The data returned by the rsw 2 instruction is shown below.
bits meahing

0-3 d-word/2-word interlace (if enabled)
4-5 processor type (01 for DPS5-8)
6-12 seven msb's of the fault base

13-13 id prom installed

18-18 dps (marketing) option

20-20 8k cache option

23-23 Multics model CPU

24-24 Multics mode enabled

29-32 cpu speed (0 = 8/70, 4 = 8/52)

33-35 cpu humber

The data returned by rsw 1 consists of four nine bit byvtes
describing cach of the four possible memory (SCU)Y ports of the
processor, The bytes appear in order in the result, SCU 0 in the
high order bits. The format of the byte is!

bits meaning

0-2 pert assignment

- port is enabled
system initialize is enabled
port is interlaced with neighbor
memory size

1

m{{lh(p)
QU LW

&-5 AN70-01

The actual memory size of the memory attached to the SCU attached
to the processor port in question is 32K ¥ 2 xx (encoded memory
size). The port assignment couples with the memory size to
determine the base address of the SCU connected to the specified
CPU port (absolute address of +the first location in the memory
attached to that SCU). The base address of the SCU is the
(actual memory size) x*x (port assignment).

The 1CM has similar port description information
interpreted similarly. This information is not readable from the
CPU,

SCU HARDWARE CONF IGURATION

The SCU also has descriptien of its ports (to CPUs and
I8Ms) as well as description of the store units attached to it.
This information is determined by the recr instruction
{pmut$rscrl), given the SC_CFG argument. (The explanation of the
rscr instruction appears later.) The portions of the result that
pertain to SCU port and steore unit configuration are shown below.

bits meaning

09-11 lower store size
12-15 store unit (A A1 B Bl1) on-line
21-21 SCU in program mode {vs manual}

22-22 non-existant address checking enabled
23-29 non-~existant address limit

30-30 store unit interlace enhabled

31-31 B is lower addressed store (vs A)
32-35 port enable mask for ports 0-3

57-83 cyclic priority (0/1-6/7)

B88-71 port enable mask for ports 4-7

A DPS5-8 SCU may have up tco four store units attached to it.
If this is the case, two store units form =2 pair of units. The
size of a pair of units (or a single unit) is 32K x 2 xx (lower
store size) above.

I+ the non-existant address flag is on, any address to a
store unit whose high order bits (above the lower 15) is greater
than or equal to 1the non-existant address 1imit generates a
non-~existant address SCU illegal action.

A SCU will respond to and provide information to only those
ports that are enabled (port enable mask above).

SCU ADDRESSING
There are three ways in which an SCU is addressed. In the

normal mode of operation (memecry reading and writing), an active

&-6 AN70-01

unit (IGM or CPU} translates an absolute address into a memory
poert (on it) and a relative memory address within the memory
described by the memory port. The active module sends the
address to the SCU on the proper memory port. If the active
module is enabled by the port enable mask in the referenced SCU,
the SCU will +take the address given to it and provide the
necessary memory access.

The other two ways pertain to reading/setting control
registers in the SCU itself. For each of these, it is still
necessary to spacify somehow the memory port on the CPU whose SCU
registers are desired. For the rmcm, smcm and smic instructions,
this consists of providing a virtual address to the processor for
which bits 1 and 2 are the memory port desired.

The rscr and sscr instructions, though, key off the final
absolute address 1o determine the SCU (or SCU store unit)
desired. Thus, software needs a way to translate a memory port
number into an absolute address to reach the SCU, This is done
with the paged segment scas, geherated by init_scas (and
init_scul). scas has a page corresponding to each SCU and to each
store unit in each SCU. pmut$rscr and pmut$sscr use the memory
port number desired to generate a virtual address into scas whose
absolute address {(courtesy of the ptws for scas) just happens to
describe memory within that SCU.

The cioc instruction (discussed below) also depends on the
final absolute address of the target operand to identify the SCU
to perform the operation. In the case of the cioc instruction,
though, this has nho particular impact in Multics software. All
target operands for the cioc instruction when referencing [0OMs
are in the low order SCU. When referencing CPUs, the SCU
performing the connecting has no real bearing.

As mentioned earlier, communication between active modules

{CPUs and 10Ms) can only be performed through SCUs.

CPUs communicate to I0Ms and other CPUs via the cioc
conhect i/0 channel) instruction. The operand of the instruction
is & word in memory. The 8SCU containing this operand is the SCU
that performs the connect function. The word fetched from memory
contains in its low order bits the identity of a port on the SCU
to which this connect is to be sent. This only succeeds if the
target port is enabled (port enable mask) on +the SCU. When the
target of the connect is an [I0OM, this generates a conneci strobe
to the 10M, The I0M examines its mailbox in memory to determine
its course of action, When the target of the connect is ancother
CPU, this generates a connect fault in the target processor. The
target processor determines what course to follow on the basis of
information in memory analyzed by software. When a connhect is

8-7 AN70-01

sent +to a processor (including the processor issuing the con-
hect), the connhect is defarred until the processor stops
executing inhibited code (instructions with the inhibit bit set).

Sighals sent from an ICOM to a CPU are much more involved.
The basic flow is as follows. The 16M determines an interrupt
number. (The interrupt number is a five bit value, from 0 to 31.
‘The high order two bits are the interrupt level.

0 - system fault

1 - terminate
2 - marker
3 - special

The 1low order three bits determines the [0OM and I10M channel
group,) _ - . _ .

0 - I6M 0 channels 32-83
1 - 186M 1 channhels 32-63
2 - I6M 2 channels 32-63
3 - I6M 3 channels 32-63
4 - 16M O channels 0-31
5 = 18M 1 channels 0-31
6 - I10M 2 channels 0-31
7 - I6M 8 channels 0-31

[t also takes the channel number in the group (0-31 meaning
either channels 0-31 or 82-63) and sets the <channel number>th
bit in the <interrupt number>th memory location in the interrupt
mask word (IMW) array in memory, It then generates a word with
the <interrupt number>th bit set and sends this to the bootload
SCU with the SXC (set execute cells) SCU command, This sets the
execute interrupt cell register in the SCU and sends an XIP

(execute interrupt present) sighal to various processors
connected to the 3SCU, {(The details of this are covered in the
hext section.) ne of the. processors (the first to get to it)

sends an XEC (execute interrupt cells) SCU command to the SCU who
generated the XIP signhal. The SCU provides the interrupt number
to the processor, who uses it to determine the address of a fault
pair in memory for the "fault" caused by this interrupt. The
processing of the XEC command acts upon the highest priority
(lowest numbered) bit in the execute interrupt cell register, and
also resets this bit in the register.

Interrupt Masks and Assignment

The mechanism for determining which processors are candi-
dates for receiving an interrupt from an I[GM is an involved
topic, First of all, a processor will not be interrupted as long
as it is executing Iinhibited instructions (instructions with the
inhibit bit set). Beyond this, though, lies the question of
interrupt masks and mask assignment.

8-8 AN70-01

Internal to +the SCU are two sets of registers (A and B},
each set consisting of the execute interrupt mask register and

the interrupt mask assignment register. Each execute interrupt
mask register is 32 bits long, with each bit enabling the
corresponding bit in the execute interrupt cell register. Each

interrupt mask assignment register has two parts, an assighed bit
and a set of ports to which it is assigned (8 bits). When a bit
is set in the execute interrupt cells register, the SCU ands this
bit with the corresponding bit in each of the execute interrupt
mask registers,. I+ the corresponding bit of execute interrupt
mask register A, for example, is on, the SCU then looks at the A
interrupt mask assignment register. I+ +this register is not
azsigned (enabled), ne further sction takes place in regards to
the A registers,. (The B registers are still considered (in
parallel , by the way).) If the register is assignhed (enabled),
then interrupts will be sent to all ports (processors) whose
corresponding bit is set in the interrupt mask assignment
register. Thus, only certain interrupts are allowed to be
sighalled at any given time (based on the contents of the execute
interrupt mask registers) and only certain processors will
receive these interrupts (as controlled by the interrupt mask
assignment registers).

In Multics, only one processor is listed in each of the two
interrupt mask assignment registers, and no processor appears in
both. Thus, there is a ohe for one correspondence between
interrupt masks that are assigned {interrupt mask registers whose
assigned (enabled) it is on) and processors who have an
interrupt mask (SCU port number appears in an interrupt mask
assignment register). So, at any one time only two processors
are eligible to receive interrupts. Other processors need not
worry about masking interrupts.

The contents of the interrupt mask registers may be
obtained with the S8SCU configursation information with <the rscr
instruction and set with the sscr instruction. - : SR

bits meaning

00-07 porte assighed to mask A (interrupt mask assignment Al
0e-08 mask A is unassigned (disabled)
36-43 ports assigned to mask B (interrupt mask assighment B)
44- 44 mask B is unassigned (disabled)

The contents of a execute interrupt mask register are
obtained with the rmcm or the rscr instruction and set with the
smem or the sscr instruction. The rmcem and smem instruction only
work if the processor making tThe reguest has a mask register

assigned to it. If not, rmcm returns zero (no interrupts are
enabled to it) and a smcm is ighored (actually, the port mask
setting is till donel, The rscr and sscr instructions allow the

examining/setting of the execute interrupt mask register for any
port on a SCU; these have the same effect as smcm and rmem if the

&-9 AN70-01

SCU port being referenced does not have a mask assignhed to it.
The format of the data returned by these instructions is as
follows,

bits mean i ng

00-15 execute interrupt mask register 00-15
32-35 SCU port mask 0-3
36-51 execute interrupt mask register 16-31
68-71 SCU port mask 4-7

Operations upcon masks

Since at most two processors have interrupt masks assignhed
to them, not all processors can manipulate their own masks. But,
to remove the need for processors to ask whether they have a mask
before operating upon them (in partiuclar, to mask interrupts), a
mechanism has been devised. It's execution is carried out by by
pmut$set_mask and pmuidresad_mask. The code fragment of pmut that
reads/sets the mask follows.

read_mask:

1x11 prds$processor_tag

tprpab scsSmask_ptr, %1

xec scs$read_mask, x1
set_mask:

1x11 prds$processor_tag

1prpap scs$mask_ptr, x1

Xec scsbset_mask, x1

For each processor tag, then, there is a set of data pointers and
instructions in scs$mask_ptr, scs$read_mask and scs$set_mask that
either operate upon the processor’s mask or pretend they did,
When the processor in question does not have an interrupt mask,
the data is as follows:

mask_ptr - packed pointer to
prdsEsimulated_mask

read_mask:
ldag abkl0

set_mask:
staq abld

which will succeed in doing nothing. When the processor does
have an interrupt mask, the data is as follows:

mask_ptr - packed pointer to
scs$port_addressing_word(bootload scul

@
1

10 AN70-01

read_mask:

rmcm akiO, x
set_mask:
smcm abi 0, %
which will read and set the mask., The array

scs$port_addressing_word contains the data words required as
operands for the rmcm, smcm and smic instructions. They contain
the memory port number in their low order bits (i.e., their array
index is their contents). The amic instruction uses
scsS interrupt_contiroller (the low order memory port {(address 0))
as ian array index to perform the smic against the leow corder SCU,

The operands of the pmut$read_mask and pmut$set_mask opera-
“tions (rmem and smcm instructions, respectively) were described
above, The value scsisys_level masks all interrupts, It has
zeroes for all bits loaded into the execute interrupt mask
register but has all ones for all ports of the SCU to which
chabled active modules are connected. scs$open_level has the
same SCU port enable bits but has ones for all interrupts of all
levels from both channel sets of all I0Ms currently active.

Sequence of lnitialization
Configuration initialization sccurs primarily within

scs_and_clock_init, iom_data_init, scas_init and init_scu called
from within scas_init.

The name of this routine should probably be just scs_init,.
The clock portion is really just a check of clock functioning
{and setting up cleock data in generall, It fills in the
scs$port_addressing_word's as descr ibed above.
scsSprocessor_switch_data is read to get the configuration and
data switch values. scs%bos_processor_tag is set . to indicate
this cpu (currently the only one running) as the bootload cpu.
scs$read_mask, scs$set_mask and scstmask_ptr are set to the dummy
values mentioned above, wWhen scs_and_cleck_init is run, all
interrupts are masked, and no one really needs to think about its
masks. The various processcor ports are examined looking for
memor i es. The port number of the low order memory so far is set
into scs$ interrupt_controller and sys_infoSclock_. When
scs_and_clock_init is finsihed, then, the configuration data for
the bootload cpu is khown, as well as for the various memories
attached to it. Examination of this data and setting of masks
waits for later programs.

iom_data_init initializes the data needed by io_manager.
This includes descriptions of the various [0OMs and their chan-
nels. The basic setup of this information (numbers of I[0Ms,
numbers of channels) was set up by get_ioc_segs who obtained this
data from the config_deck. Most description of 10Ms appears in

8-11 AN70-01

iom_data so no major changes take place to scs within
iom_data_init.

Aside from filling in scw's and ‘lpw's for each
channel_table and mailbox entry, the more interesting part of
iom_data_init is the main IOM card processing loop. [t examines
each I16M card, making sure that no I0OM is duplicated, that the
field values are reasonable, that no card claims an SCU port
ciaimed by another 10M (and sets scs$port_data to claim the 10M)
etc. The iom_data.per_iom data is initialized as to configured,
on_lineg, paged, etc. This routine adds to scslopen_level the
necessary bits to enable interrupts from the I10Ms. { Interrupts
are not enabled until initialize_faulstdinterrupt_init,)

The conclusion of configuration initialization occurs in
scas_init and its servant, init_scu. At its entry, scs$port_data
has been set up to only describe the [0Ms, This routine will set
these for processors, It alse initializes scas, as its name
implies, This requires determining all memories and store units,
Aside from this, the routine checks the port enable switches for
the processor ports for correctness.

The first loop of interest scans all CPU cards, It checks
them for reasonableness, that no CPU is mentioned twice, that no
other active module claimg this SCU port, etc. The cow's

{connect operand words) used when perfoming cioc's to this
processor are set.

What follows this is the SCU scanning loop. it takes each
MEM card and checks it for reasonableness, whether tags are
duplicated, whether the memory extent (from rsw_utill) matches and
does not overlap any other memory, etc. init_scu is then called.

init_scu initializes an SCU. This is the routine that sets
up scas for a particular SCU. This is done by installing ptw's
into the page table for scas to describe the SCU. Reading the
configuration from the SCU, the data is compared against the
computed data given the processor configuration information
(which scas_init compared against the config_deck description of
the memotyl. I+ the configuration from the SCU indicates
aditional store units, the scas pages for them are set (to allow
getting the store unit mode registers with an rscril.

The mask checking part of init_scu makes sure that each
interrupt mask that is assigned on the SCU is assigned to a
processor (as opposed to an IGM) and that no more than one mask
indicates a given processor, This is done by walking down the
CPU data in scs and comparing the mask data recorded for the
other processor ports for duplication. This also records which
masks assighed for this SCU are claimed by processors. Any mask
that is assighed that does not appear in the description of a
processor is mis-assigned.

8-12 AN70-01

‘ After the SCUs have been initialized in this way, a little
‘more work is left. The bootload CPU's ports are checked, so that
no extra port is enabled. For each IGM (and the bootload CPUJ,
the port enable bit is set in sach SCU,

For each processor, we find the processors with masks
assigned. For these, we set scsset_mask, scsread_mask and
scs$mask_ptr to actually perform the rmcm and smcm instructions
as described above to manipulate their masks. We c¢check to be
sure that the bootlocad CPU cwns one of the masks.

The final loop examines the ordering of active modules on
the SCUs to see if the cyclic priority switches can be set. This
is only done if the [OM group does not overlap the CPU group.

PAGE CONTREL INITIALIZATION

Page control initialization consists of a variety of
activities run during collection one. init_sst build the sst and
core_map. The sst is needed since we need to have an aste for
page controel so that it can find what disk needs i/0 (from the
pvix within the astel. The core_map is necded since it shows the
status of memory pages (initially free between the groups of
initialization segments, currently wired). Page control needs
this information so it can find a free memory frame into which it
can read a desired page. init_pvt performs the function of
creating the pvt. It is the index into the pvt for the device
from which a page (or other i/0) is desired that is needed by
disk_control (dectll., read_disk$init is needed to initialize page
reading/writing through rdisk_seg. This routine builds the paged
segment rdisk_seg, which can be mapped onto the desired page of
disk to read. The aste for rdisk_seg contains the pvitx of the.

disk to read. The page table word for rdisk_seg provides the
disk address. At this point, we can actually read or write a
page by touching rdisk_seg within read_disk. read_disk sets up
the aste and page table word, as described. When +the page is
touched, a page fault will wake up page control. It will find a

free memory frame, read the page in, and resolve the page fault.

read_disk_label uses read_disk, then, to read a disk label.
init_root_vols uses read_disk_label to read the label of hardcore
partition volumes, Given the label, it finds the partition map
and finds the hardcore partition. A small volmap is built that
describes this partition and is mapped onto the beginning of the
partition. A small record stock is built to describe the volmap.
Given this initial stock, attempts to create or free pages onh a
disk (within the hardcore partition) can succead. Now, we cah
create hardcore segments by building null page tables and taking
page faults. Page contrel will find a free page from the volmap
for the partition (whose pvtx is in the aste) and resolve our
page fault, At this point, all of the services we need of page
control are available. For the case of later activities who need

8-13 AN70-01

various partitions to map paged areas onto, init_partitions is
called to validate the part information. We now page happily.

Later, in collection two, the real wvolmaps and record
stocks are set up by accept_rpv. After this point, page control
will simply shift its page creation/freeing activity to that
descr ibed by the paging region. All hardcore segmenits had their
pages pre-withdrawn from the hardcore partition, so no possibili-
ty exists that we will accidentally put a paging region page into
a hardcore segment.

SEGMENT AND DIRECTORY CONTROL INITIALIZATION

Segment and directory control are initialized in stages
throughout collections one and two. It started in collection one
when the sst was built. It continues into collection twe with
getuidinit. This allows us to generate unique ids for newly
created segments and directories. init_vtoc_man paves the way
for vtoc_man to perform i/o on vtoces. Segment control's trailer
segment is created by init_str_sed. accepi_rpv sets up the real
vtoc maps and vioc stocks. Now vtoc_man can really read and
write vtoces, as well as create and free them. Mow, if we were
to try a hormal activation of a segment, given its pvix/vtocx, we
could find the segment and thread the segment inte the right
astes and trailers, init_lvt builds an initial rlv (in the 1vt)
out of +the disks listed as having hardcore partitions. This
allows segment control's disk selection algorithm to be able to
find a disk to use when segments try to be created. We now have
enough mechanism in place to utilize most of the facilities of
segment control, but we cannot yet access and activate hierarchy
segments,

The initialization of directory control iz imbedded within

the initialization of segment conptrol. It started with
dir_lock_init providing us with an initially empty list of locked
directories. The real start up of directory control, though,

occurs in init_root_dir, This builds the kst (used at segment
fault time to resolve segment numbers into an understanding of
what needs activation) and creates (if need be) and activates and
initiates by hand the root directory. Directory ccntrol can now
reference hierarchy objecte with segment contrel’s help. Any
attempt to create a hierarchy segment (appendl can succeed by

selecting a disk (lvt lookup), vtoce creation (vtoc_man using
vtoc stock, vtoc map and vtoc buffers) and aste creation (using
ss8t and the trailer seg). Also, deactivation is possible since

the trailer is built to describe what to setfault and the kst is
present to be able to re-activate, At this point, we are able to
handle segment Ffaults, given the information in the kst and by
recursively traveling down the hierarchy by virtue of the fact
that the root is now and always active.

8-14 AN70-01

SEGMENT NUMBER ASSIGNMENT

There are basically three classes of segments as far as
segment humber assignment is cencerned. The Ffirst is segments
that will be a permanent part of the supervisor. These are
assignhed consecutive segment numbers, starting at 0. dseg is
always 0, of course.

The second class is initialization and collection temporary
segments, These are assigned consecutive numbers starting at 400
octal. Although temporary segments are deleted at the end of
each collection, their numbers are not re-used. We continue to
assign the next non-used number to the next temporary or
initialization segment,.

The order of assignment of these numbers is purely
according to the order that the segmentis are encountered. The
first few segments are assigned numbers by template_slt_; but,
again, this is in order of encounterance. The only recuirements
are that dseg must be segment 0 and that the s1t must be segment
7 (assumed by all dump analyzers).

Normal hierarchy segments fall into the third class of
segments, as far as segment number assignment is concerned. As
for these, the sequence is as follows, The next higher mod 8
segment humber after the last permanent supervisor segment is
chosen as the stack base (ring zero stack number). The next
seven numbers are assighed to the outer ring stacks, in order.
Since the root is made active after this, and the root becomes
the first real hierarchy segment initiated, it gets the segment
number after stack_7. Gther segments are assigned progressively
higher segment nhumbers according to segment control's normal
rules, We do not need to worry about running into segment number
400 octal since these segments will be deleted before we ever get
that far, Bnly permanent supervisor segments will show up in
one's dseg.

Some supervisor segments (deciduous segments) get initiated
inte the normal user's address space. Regular stacks are
initiated by special handling (makestack called from the segfault
handler) and are directly referred to by the reserved stack

segment humbers, A normal segment like bound_library_1_ is
activated through normal segment control means, Thus, it will
appear in two places in the user's address space; one in the

supervisor segment number range (with ring brackets of 0O, 0, O,
by the way) and once in the user ring segment number range
(greater than the root's segment number) {with ring brackets of
0, n, n). ‘

This is a problem for hardcore gates, though, relative to
their linkages. A user ring call to bound_library_1_ will cause
modules within it to find their linkage section from the lot
entry for this segment, Any module called from bound_library_1_

8-195 AN70-01

will also be in the user ring, so the user ring linkage section
for the segment number corresponding to the user ring version of
bound_library_1_ will find the called module. Hardcore gates,
however, don't call hierarchy entities but instead call entities
that can ohly be found through the linkage section gencrated via
pre-linking during initialization which resides in the ring =zero
linkage section corresponding to the hardcore segment number. To
make it possible to find this easily, init_hardcore_gates stored
into the hardcore gate segdef .my_lp the pointer to this 1inkage
section. Thus, when called from the outer ring with the cuter
ring segment number, hardcore gates will quickly switch over to
the hardsere limkage section and function properliy.

TRAFFIC CONTREL INITIALIZATIGN

A1l three collections contribute efforts toward enabling
traffic control, Collection one starts by building the tc_data
segment in tc_init, full of empty aptes to describe processes.
At this time, though, a flag in tc_data indicates that
mult-programming is not active, Any call to traffic control to
pxss$wait will simply loop for notification {iwhich will come from
a call to pxss$notify in some interrupt routine). No polling
routines are run at this time, Bther initialtization activities
proceed to build the supervisor address space.

Collection two starts up multi-programming. It does this
through te_initéSpart_2. Multi-programming regquires
multi-processes; initially this is the Initializer and an idle
process, but it soon encompasses anhswering service created
processes and hardcore processes (hprocs). Creating an idle
process requires creating a pds, stack_0 (prds) and dseg for it.
The dseg and pds are simply copies of those for the Initializer,
now that they are filled in. apte entries for the Initializer

and for idle are created. We can now consider multi-programming
to be on. start_cpu is called to start the processor. For. the
‘bootload processor, this means calling init_processor in a
special case environment (non-absolute mode, if nothing elsel.
init_processor (the idle loop) marks itself as a running
precessor, sends itself a connect, and unmasks the processor.

The conhect will go to traffic control, who will pre-empt idle
and return control to lnitializer.

In collection three, start_cpu is called {from
tc_initsstart_other_cpus) in the same manner as would be done for
adding a cpu during reconfiguration, This is somewhat described
in the reconfiguration manual,

8-16 AN70-01

SECTICON 9

SHUTDOWN AND EMERGENCY SHUTDOWN

The goal of shutdown, obviously enough, . is to provide an
orderly cessation to service. A normal shutdown is one in which
the system shuts itself down, following the direction of the
operator's "shut" command. An emergency shutdown is that opera-
tion invoked by bce which forces Multics to run
emergency_shutdown, which performs the clean up operaticns below,

fne could consider the system to be shutdown if one simply
forced a return to bce, but this is not enough. Proper shutdown
involves, at first, the answering service function of logging out
all users, The answering service then shuts itself down,
updating final accounting figures. Now with just the Initializer
running, the task of shutdown described here follows.

The major goal of shutdown and emergency_shutdown is to
maintain consistency of the storage system. It is necessary to
move all updated pages of segments to disk, 1o update all
directories in question with new status information, teo update
vioces of segments referenced, and to clear up any effects caused
by the creation of supervisor segments,

These functions must be performed in several stages. Also,
the ordering of operations is such as to minimize the degree of
inconsistency within the storage system that would occur if a
failure were to occur at any point.

Since these same functions are performed for an emergency

shutdown, the operations are performed so as to assume as little
as possible from the infoermation in memory.

ORDER OF EXECUTION OF SHUTDOWN

The module shutdown is called via hphces_$shutdown. It
starts by removing the fact that we were called from an outer
ring, so we won't accidentally return. An anv_other handler is

set up to flag any possible error, later. The first action of

9-1 AN70-01

shutdown is to force itself to run on the bootload cpu and to
stop the others (stop_cpu).

disk_emergency$test_all_drives checks out all of the stor-
age system drives at once to avoid errors later.

tc_shutdown destroys the remnants of any processes and
turns off multi-processing.

scavenhger$shutdown cleans uJp any scavenhges that were in
progress,

We then switch over to the stack inzr_ stk for the rest of
shutdown, This is performed through the alm routine,
switch_shutdown_file_system, which starts the file system shut
cown.

shutdown_~Ffile_system is the first program called on
inzr_stko. It is a driver for the shutdown of the file system.
It starts by updating the rpv volmap, vtoc header (and vtoc map)
and label of the rpv to show the current state (in case problems
occur later).

The most important step, from the user's point of view, is
to Fflush all pages in memory (considered to be part one of

shutdown) with pcsflush. This is relatively easy and safe to
perform since it only requires walking down core map entries; sst
threads, etc. do not have to ke trusted. This marks the

completion of (emergency) shutdown, part 1.

The stack zero segments are released so that demount_pv can
deactivate them.

deactivate_for_demount$shutdown deactivates all
nonh-hardcore segments and reverts deciduous segments (removes
from the hierarchy those supervisor segments put intoe the
hierarchy during initialization), This updates the directories
containing those segments that were active at shutdown time (and
their vtoces).

Cur next task is to remove the pages of these updated

directories from memory. We start by demounting all operative
disks (other than the rpvl with demount_pv. After this, if any
locks remain set, we sot the shutdown state to three; it is

normally four.

If any disks =are inoperative, we just perform another
memory flush (to remove rpv directory pages), wait for console
ifo to finish (ocdem_$drain_io)l and return to bce,

If all was c¢kay, we demount the rpv with demount_pv. The

storage system is now considered to be shut down. The ssenb Tlag
in the flagbox is reset to show this, We flush memery once more,

°-2 AN70-01

to get the last log messages out. The message "shutdown
complete" is printed; we wait for console completion. Shutdown
can how return to bce,

ORDER OF EXECUTIGN OF EMERGENCY SHUTDOWN

emergency_shutdown is called from bce. bce modified the
machine conditions of the time of return to bce to cause a return
to emergency._shutdownl 0, This module initializes itself through
text imbeded pointers to its linkage secticon, etc. and enters
appending mode,

Multi-programming is forced off (tc_datatiwait_enhable).

~ The apt, metering and various apte locks are forced
unlocked.

The return to bce earlier stopped all of the other cpus.
scstprocessor is set to show this fact,

The connhect lock is forced unlocked.

Various trouble pending, etc, flags are reset in case of
another failure.

scs masks, etc. are set up for single (bootload) cpu
operation. We mask downh to sys_level.

A switch is made to the idle process, This 1is done by
using scs$idle_aptep to find the idle's apte. Its dbr is lcaded.

A1l other cpus are set to delete themselves, in case they
try to start.

The idle process has prds as its stack. A stack frame is
pushed onto this stack by hand,

The ast and reconfiguration locks are forcibly unlocked,

The first external module is called,. ocdcm_S$esd_reset
resets oc_dats, and the console software.
syserr_real$syserr_reset resets the syserr logger and the
syserr_data segment and flags.

io_manager$reset resets iom_cdata status.

page$esd_reset resets its view of the disk dinm.

pc_recover_sst recomputes the page control state.
page$time_out is called.

-3 AN70-01

disk_emergencydtest_all_drives_masked runs as for normal
shutdown, but in a masked state.

The prds is abandoned as a stack (it is reset) and the

stack pointer set %o null (idle process), The first page of
template_pds is wired and the sdw for pds set to point to
template_pds (hopefully a good pds)., The first page is touched,
hopefully successfully paging in the page. The stack pointers
are then set to inzr_stko, We then call

wired_shutdown$wired_emergency.

wired_shutdown sets an any_other handier and unmasks the
processor., It makes a few checks to see if the storage systom
was c¢chabled, If a vtoc_buffer is in the unsafe state, its
physical volume has its trouble count incremented.

For each pvte, the'scavénger data is reset as in & normal
shutdown. page$reset_pvte is called. Emergency shutdown part 1
is started.

fsout_vol updates the rpv information on disk as for
shutdown.

Pages of segments are flushed from information in the core
map entries (pciflush). The rpv information is again written.
This ends part one of emergency shutdown,

vitoc_mand$stablilize gets vitoc buffers into shape.

We can now call shutdown_file_system and let normal opera-
tions carefully +try to update directories and vtoces, as for a
normal shutdown.

MODULE DESCRIPTICNS

deactivate for demount.pll

Cther than the flushing of pages themselves, the
deactivation of segments (updating their directory entries and
vtoces) performed by deactivate_for_demount is one of the most
important functions of shutdown. The deactivations are performed
by hand so0o as not to disturb aste threads. The operation
cohnsists of walking cdown the ast hierarchy (tree)-wise,
recognizing that each active segment has all of its parent
directories also active. We start at the root. For each segment
to consider, we look down its inferior list. Each 1look at an
aste and an inferior element is performed with a wvariety of
validity checks on the aste (within pool boundaries, parent/son
peinters correct, etc), Af inferiors exists, they are pushed
onto a stack (max hierarchy depth deep) of astes to consider.
When we push an aste with no inferiors, we consider it directly.

8-4 AN70-01

If it was a hardcore segment (deciduous), it is removed from the
aste list it is in and its vtoce freed. Non-hardcore segments
have their pages flushed (pcicleanup) if they are not entry-held
{entry-held segments, such as pdses had their pages flushed
carlier and will be caught in the final flush) and their vtoces
updated (update_vitocedSdeact). After a segment is considered, its
brothers are considered. When they are done, we return back to
their parent for consideration. We proceed in this manner until
we consider and pop the root aste off the stack. Segment control
is now no longer active.

demount pv . pll

demount_pv demounts a physical volume. It starts by
waiting for everyone to relinquish the drive; that is, no one can
be in the middle of a physical volume operation. All segments on
the wvolume are deactivated. For the shutdown c¢ase described
here, a special deactivation is performed tc avoid possible
problems in the case of emergency shutdown. Each aste pool is
traversed (by numerical order, not link order because of possible
mis-linkings). All non-hardcore segments (except the rootl) are
deactivated in-line by calling pcicleanup and update_vioceSdeact
onh the segment. We then wait for all vtoc i/0 to complete to the
disk. fsout_vol is called to update the volmap, vtoc header and
map and the label. Finishing, we clean up the pvt entry,

disk emeragency . pll

To eamse the burden on shutdown of drives being inoperative,
disk_emergencybtest_all_drives is called. It tests all storage
system drives by first assuming that each one is good, then
running disk_control$test_drive. If the drive is declared inop-
erative this time, it is marked as such with an error report
printed. Shutdown of objects on this drive will be suspended.

emergency shuytdown.alm

bce, when crashed to, received the machine conditions at
the time of the call to bce, For an emergency shutdown [(esd),
bce patches these 1o force a <transfer to emergency_shutdownl 0.
Multi-programming is forced off (tc_datadlwait_enable). The apt,
metering and various apte locks are forced unlocked. The return
To bece earlier stopped 211 of the other cpus. scs$processor is
set to show this fact. The connect lock is forced unlocked,
Various trouble pending, etc. flags are reset in case of another
failure. acs masks, etc. are set up for single (bootload) cpu

operation. We mask down to sys_level. A aswitch is made to the
idle process. All other cpus are set to delete themselves, in
case they try to start. The idle process has prds as its stack.
A stack frame is pushed onto this stack. The ast and

e-5 AN70-01

reconfiguration locks are forcibly unlocked. ocdecm_%$esd_reset

resets oc_dclata, and the console software,.
syserr_real$syserr_reset resets the syserr logger and the
syserr_data segment and flags. io_managers$reset resets iom_data
status. page$Sesd_reset resets its view of the disk dim.
pc_recover_sst recomputes the page control state, pagedtime_out
is called. disk_emergency$test_all_drives_masked runs as for

nermal shutdown, but in a masked state. The prds is abandoned as
a stack (it is reset) and the stack pointer set to null (idle
process) . The first page of template_pds is wired and the sdw
for pds set to point to template_pds (hopefully a good pds). The
first page is touched, hopefully successfully paging in the page.
The stack pointers are then set te inzr_stko. We then call
wired_shutdown$wired_ emergency.

fsout vol.pll

fsout_vol is called whenever a volume is demounted, This
includes +the shutdown equivalent function. [t endeavors to
update the volume map, vtoc header and map and label Ffor a
physical wvolume. It drains the vtoce stock for the disk
{vtoc_stock_manddrain_stock) to return those vtoces withdrawn
previously. The vtoc map is then forced out to disk, We can

then free the vtoc stock. We similarly drain, write out and free
the record stock/map. The dumper bit map is freed and updated to
disk. The time map updated and mounted is updated in the label.
If this is the root, this is the program that records in the
label such useful information as the disk_table_vtocx and uid and
the shutdown and esd state.

s (=] 1
The shutdown entrypoint to scavenger is called during
shutdown to clean up any scavenge operations in progress.. It

walks down scavenger_data looking for live entries. For each, it
clears the correspeonding pvte fields deposit_to_volmap,
scav_check_address and scavenger_block_rel which affects the
operation of page control,

toow i
This is the starting driver for shutdown operations. It is
called from hphes_Sshutdown from the Initializer command
shutdown. It forces itself to run on the bootload cpu and it

stmps the others. disk_emergency$test_all_drives test the drives
before use. tc_shutdown stops and destroys the other processes.
scavenges are stopped (scavengerSshutdown), We then switch
stacks back te¢ inzr_stk0 and proceed through shutdown within
switch_shutdown_file_system,

g-6 AN70-01

shutdown file system.pll

shutdown_+ile_system is the driver for the shutdown of the
file system. It runs on inzr_stkO. Its operations include:
fsout_vol updating of the rpv, flushing pages of segments,
releasing stack_0 segments for deactivation purposes;, running
deactivate_for_demount$shutdown to deactivate non-hardcore seg-
ments and revert supervisgsor segments threaded inte the hierarchy
at initialization {updating directories as a result) and then
flushing memory again (by calls to demouni_pv for the various

diskse). This module kegps track of the state of operativeness of
drives; if any are incperative, we just perform a final flush and
auit; otherwise we can demount the rpv also. A Ffinmal filush is

performed to get syserr log pages out. After console i70 has
drained, we can return to bce.

switch_shutdown_file_system is the first program in a set
to shut down the file system, It moves us back to inzr_stkQ, the
initialization stack for our processing. While it is fiddling
with stack pointers, it also sets pdsSstack_0_ptr and
pdststack_0_sdwp. On this new stack, it calls
shutdown_+ile_system.

tc shuytdown.pll

Traffic control is shutdown by tc_shutdown. It flags the
system as being in a shutting down state
(tc_databsystem_shutdown) . It also sets wait_enable to 0O,
disabling multi-programming. For each process in the apt,

deactivate_segs is called, destroying the process and finishing
our task.

wired shutdown.pll

The module wired_shutdown is the counterpart to shutdown in
the esd case. It starts by setting an any_other handler and
unmasking the processor, It makes a Ffew checks to see if the
storage system was enabled. If a vtoc_buffer is in the unsafe
state, its physical volume has its trouble count incremented.
For each pvte, the scavenger data is reset as in a normal
shutdown. page$reset_pvte is called. Emergency shutdown part 1

is started. fsout_vol updates the rpv information on disk as for
shutdown. Pages of segments are flushed from information in the
core map entries (pcsflush), The rpv information is again
written, This ends part one of emergency shutdown.
vtoc_man$stablilize gets wvtoc buffers into shape. We can now
call shutdewn_file_system and let normal operations carefully try
to update directories and vitoces, as for a normal shutdown.

8-7 AN70-01

APPENDIX A

GLOSSARY

abs-seg

bce

An abs-seg is a reserved segment number in the hardcore
address space used to access disk or memory outside of the
normal mechanisms. That is, they are not built by the
nermal functions that append to the storage system nor are
they built by the functions that create segments out of the
hardcore partition or initialization memory. Examples of
abs-segs are segments mapped onte an area of disk to allow
paging to be used to read/write them (such a mechanism is
used to read the config deck from disk) or segments mapped
onte an area of memory for examination (page control does
this to examine pages being evicted), abs-segs are managed
(i.e., created and deleted), each in its own way, by a set
of software created For the purpose; ne may hnot use the
standard system functions to operate upon them (such as
segment deletionl. However, the contents of the segments
are addressed through normal mechanisms; that (s, memory
mapped abs-segs are referencable wvia the hardware and
abs-segs built with an aste/page table pair in the sst are
allowed to have page faults taken against them.

The Bootload Command Environment within bootload Multics,
that is, the collection of programs and facilities that make
up a command level that allows certain critical functions to
be performed before storage system activation occurs during
system initialization.

bootload Multics

cold

Those early parts of initialization that are capable of
booting bce from a cold, bare machine, including bce itself.

boot
A bootload in which the state of all hardware and peripher-
als is unknown. In particular, the Multics file system is

either non-existant or has been destroyved. This is also
khown as an initial boot.

A-1 AN70-01

collection

A "collection" is a set of programs read in as a unijit that
together perform a function during initialization. Collec-
tions are referred to by number, starting with zero. Each
collection depends on the mechanisms initialized by the
collections that preceded it. As each collection finishes
its task, some of that collection is deleted and some is
kept, depending on the redquirements of future collections.

There are alsc fractionally numbered collections, which
consist of support entities for the preceding collection.

The division of initialization inte collections is done
based upon various restrictions imposed by the course of
initialization. For example, since the first few collec-
tions must run entirely within memory, restrictions on
available memory (and the amount that can be required of a
system) force unessential programs into later collections,

contiguous

cool

crash

A contiguous segment is one whose memory locations describe
contiguous absolute memory locations, Most segments do nhot
have this reguirement; their pages may appear arbitrarily in
memory. Certain segments, though, such as the sst_seg must
have their locations in order, due to hardware reguirements
for placement of their contents.

boot

A bootload in which the Multics file system 1is on disk and
believed to be good but in which the state of memory and
other peripherals is unknown, In particular, booctload
Multics is not running. The mpc's may or may nhot have
firmware runhing in them, The system is loaded from the MST
(tape) and initiated via iom switches,

A failure of Multics. This may be the result of a hardware
or software failure that causes Multics to abort itself or
the result of an operator aborting it. A crash of Multics
during early initialization can produce a tape dump of
memory. Crashes after this time can be examined with bce
utilities or saved to disk by bce and analyzed later.

deciducus segments

These are segments generated or read Iin as part of
initialization which are given branches in the hierarchy (by
init_branches). Although they become part of the hierarchy,
their pages remain in the hardcore partition and are
therefore destroyed between bootloads, Examples are the
segments in >s811 and the Ilnitializer's pds. {The name
suggests the leaves of trees.)

A-2 AN70-01

deposit
A page control concept, It means to add an object to a list
of fres objects.

dseg
descriptor segment {see data bases)

dump
A subset of Multics segments saved after a crash that can be
examined through various dump analysis tools to determine
the cause of the preceding crash. A dump is either a disk
dump, a dump performed to the dump partition of disk by the
cdump facility of bee, or an "early dump”, one parformed 1o
tape during early initialization.

early initialization -
These parts of initiaslization needed to reach bootload
Multics command level. All activities after leaving
bootload Multics command level are referred to as service
initialization,

emergency shutdown

’ A Multics operation, invoked by bce, that runs a subset of
the hardcore facilities to shut down the file system (put
the storage system intce a consistent state) after a crash.

esd
emergency shutdown

hardcore
The supervisor of Multics, loosely defined. This is a
collection of programs and segments genherated or read in
during initialization.

hproc

A hardcore process. Such a process is created by a call to
create_hprocg, as opposed to being created through the
answer ing service. Such hprocs (currently
SyserrlLogger, Daemon and MCS_Timer_Daemon. SysDaemon) perform
activities integral to the system operation and must be
created prior to, and independent of, the answering service.

init segments
Segments needed only during the course of initialization.
" These are deleted after the end of +the last hardcore
collection.

initialization
The action of starting Multics. This consists of placing
the appropriate software modules in the appropriate places
and constructing the appropriate software tables such that
an event, such as someone trying to dial a login line, or a
page fault occuring, etc, will invocke the proper software

A-3 AN70-01

which will be in a position to perform the necessary
operation.

kst

khown segment table (see data bases)
vt

logical volume table (sece data bases)
MST

Multics system tape

Multics system tape
The "tape" is the set of Multics programs that will make up
the supervisor in un-pre-linked form. This set of programs
originates on a tape; socme of them spend part of their lives
in a disk partition.

nhohdeciduous
A hardcore segment not mapped into the hierarchy. These
segments live in the hardcore partiticon and are known only
by having sdw's in the hardcore address space.

partition

An area of a storage system disk, other than the label,
vtoc, volume map anhd paging area. These areas can be
accessed by paging mechanismg but are not used to held pages
of storage syvstem segments, Hardcore segments are mapped
onto the hardcore partition so that they may be used, and
early initialization can run, without touching the file
system proper.

pre-linking

As the Multics supervisor is read from the MST, the various
modules are linked tTogether. This operation, called
pre-linking, is similar to linking (binding} -that occurs
during hormal service operation for user programs, except
that it consists of running through all segments and finding
all external references and resolving them. This is done
during initialization for efficiency, as well as for the
fact that the dvnamic linker cannot be used to link itself.

ptw

page table word
ptwam

page table word associative memory
pvt

physical voelume table (see data bases)

root physical volume
The main disk drive, It can never be deleted. This drive

A~-4 AN70-01

is used to hold the original hardcore partition as well as
the partitions required by bce and is therefore required at
an early peoint in Multics initialization,

rpv
root physical voiume
scas
system conhtroller addressing segment (see data bases)
scs
system communications segment (sece data bases)
sdw
segment descriptor word
sdwam
segment descriptor word associative memory
shutdown
The orderly cessation of Multics service, performed such as
to maintain consistency of the storage system,
slt

segment loading table (see data bases)

supervisor
A collection of software needed for operation of user's
software and support software provided for the user. This
would include software to make disk accessing possible, to
provide scheduling activity, etc. The supervisor in Multics
is referred to as "hardcore".

temp segments
Segments needed only during one collection. They are
deleted at the end of the major collection, before loading
the next collection,

uid
unicgue identifier (of a segment)

unpaged
A segment that is not paged under the auspices of page
control. Such a segment has its page table either in

unpaged_page_tables or int_unpaged_page_tables. Except for
the possible presence of the breakpcint_page, these segments
are contiguocus. During early initialization, all segments
are generated to be of this tyvpe. The program
make_segs_paged forms paged segments that are copies of the
pagable initialization segmentis. Certain wired segments,
though, are left unpaged.

A-5 AN70-01

vitoc

warm

In previous releases, unpaged segments were literally
unpaged, that is, they had no page table and had the unpaged
flag set in their sdw, Currently only fault_vectior,
iom_mailbox, dn385_mailbox, isolts_abs_seqg, abs_seg and
abs_segl are of this type but will receive page tables in a
future release.

The volume table of contents of a storage system volume.
The vtoc 1is divided into entries (vtoce), each of which
describes a hierarchy segment contained on that volume.

boot
A bootload in which the Multics file system is present on
disk and believed good, and in which bootload Multics is

running on the processor. This type of bootload of Multics

is performed from disk.

wired

A page, or set of pages, is wired if it cannot be moved from
memory by page control,

withdraw

A page control concept, said of records and vitoces, It
means to remove an cbject from a list of free objects.

A-6 AN70-01

APPENDIX B

INITIALIZATICON AND INITIALIZED DATA BASES

_ This appendix describes various data bases kept by
initialization or that are generated by initialization. As such,
this list incorporates the most significant data bases within the
system,

Al LINKAGE (ACTIVE INIT LINKAGE)

This initialization segment corresponds to area. linker for
initialization programs that will be paged. This area is built
by bootload_loader and segment_loader from linkage sections found
on the MST.

AS LINKAGE (ACTIVE SUPERVISOR LINKAGE)

This hardcore segment corresponds to area.linker for paged
supervisor programs. It ise shared across processes, and can
therefore contain only per-system static such as initialization
static variables (when only one process is running) or system
wide counters, etc. The linkage areas are formed in here by the
var ious MST loading programs.

BCE DATA (BOOTLOAD COMMAND ENVIRCONMENT DATA)

bce_data keeps information that pertains toe the command
environment features of bootload Multics, It contains entries
that describe the main pseudo i/0 switches (input, output and
error) as well as the state of exec_com and subsystem execution.

BOGTLOAD INFG
bootload_info, generated initially from bootload_info.cds,
contains variocus information about the state and configuration of

early initialization. 1t contains: the location of the bootload
tape (iom, contreoeller channel, drive number and drive and

B-1 AN70-01

controller type provided by the [0M boot function), status about
firmware loading into the bootload contiroller, the location of
the rpv (iom, controller, drive number and drive and controller
type provided in the find_rpv_subsystem dialog), the location of
the bootload console (and tvpe), a variety of pointers toc other
data bases, as well as the master flags indicating the presence
of BOS and the nzed for a cold boot. All of this data is copied
into sys_boot_info dur ing geheration and during system
initialization, Most references to this data are therefore to
sys_boot_info.

bootload_info.cds has provisions 1o contain site-supplied
configuration infcermation. I+ these values are provided, no
operator gueries will be needed to bring the system up, Only
cold site boots or disk problems would require operator interven-
tion during bkoot. It is intended that an interface will be
provided to fill in these values, such that generate_mst could
set the values into the segment and the checker could report
their settings in the checker listing.

CONFIG DECK

Historically named, the config_deck contains +the descrip-
tion of the configuration. It contains one entry (card) for each
iom, cpu, memory, peripheral subsystem, etc, in the configura-
tion. It also describes various software parameters. These
entries are referenced by programs tToo numerous to count. It is
buitt initially by init_early_config to describe enough of the
system to find the rpv and read in the real config_deck saved in
a partition thereon. (If this is a cold boot, in which there
would be no config_deck, the config_deck is entered manually or
from the MST through the config deck editor.) After this time,
it becomes a wired (at its initialization address) abs-seg mapped
onte the "conf” partition. Various reconfiguration programs
modify the entries.

CORE MAP

ne of the page control data bases, the core_map describes
frames of memory available for paging. Each entry describes a
page frame. When a frame is used (it has a ptw describing it),
the disk address of the page occupving the frame is kept in the
core_map entry. init_sst initially builds the core_map. It is
updated to accurately describe the state of pagable memory by
make_segs_paged, which frees certain unpaged segments and
collect_free_core which works to Ffind wvarious holes between
segments, Page control maintains these entries,

B-2 AN70-01

pBM _SEG (DUMPER BIT MAP SEG)

dbom_seg holds +the dumper bit maps used by the volume

dumper. It is paged off the hardcore partition. Its
initialization as an area was performed by dbm_man$init. Each
configured disk drive has two maps here, one for the incremental
dumper and one for the consclidated dumper. The segment starts

with the usual lock, control information, and meters. After this
comes anh area in which the bit maps are allocated. Each bit map
consists of a bit corresponding to each vtoce on the volume in

gquestion. The bits indicate the need to dump the various
segments.
DIR LOCK SEG

dir_lock_sedg keeps track of lockings of directories and on
processes waliting thereupon. It has a header with a lock and

various status. Each dir_leck entry contains the uid of that
which is locked, various flags, threads to a more recently locked
entry, and the array of process ids for the various lockers {more
than one only for all readers).

DISK POST GQUEUE SEG

A part of page_control, disk_post_gueue_seg is an obscure
data base used to keep track of disk i/o postings that could nhot
be made because the page table was locked at the time of i/o
completion.

DISK SEG

The disk seg contains the various tables (except the pvt)
used by disk_control and dctl to perform i/o to disks. It is
split into the tables disk_data, disktab, chantab, devtab as well
as the gueue of disk i/0 reguests, disk_data contains entries
giving the names and locations within disk_seg of the disktab
entry for each configured disk subsystem, The disktab entry
contains various subsystem meters, as well as holding the queue
entries for the subsystem. Also contained herein are the chantab
and devtab entries for the subsystem. Each chantab entry lists a
iZo channel to use to perform i/o to the subsystem, given as an
io_manager index. It also holds various per channel meters, and,
most importantly, the dcw list that performs i/o on the channel.
The devtab entries, one per subsystem drive, describe the drives.
This consists of status information (inoperative, etc.) as well
as per drive statistics.

B-3 AN70-01

DM JOURNAL SEG_

A page control data base, dm_journal_seg_ is used to keep
track of page synchronizastion operations for data management. It
is allocated and initialized by init_dm_journal_seg. It starts

with a lock for manipulating the journal entries as well as the
usual wait event information. Also present are information about
the number of pages held in memory, the maximum pages held, the
humber of journals, etc. Corresponding <o each aste pool is a
structure containing a threshold and number of active,
synchronized segments. Following this are variocous meters. Then
comes the journal entries and then the page entries, Each
journal entry contains the time stamp that determines when pages
of the segment being held can be written (when the journal was
written), the number of pages held, and a relative thread to the
list of page entries for the pages being held. A page entiry
contains the threads that make up this list, a relative peinter
to the core map entry for the page, and a relative pointer to the
journal entry for the page.

DN3S55 DATA

This data seg, initialized by fnp_init, contains global
information on each configured fnp. NData for each fnp includes:
a pointer to the hardware mailbox, pointers to the dew lists and
the physical channel blocks (pcb), the number of subchannels, the

iom/channel info, indexes into the pchb for l1slas and hslas
(hmlcs), status of the delay gueues, various flags about the
state of fnp operations, the Ilct (logical channel table) entry
pointer, status of bootloading, and wvarious counts of free
blocks, input and output data and control transaction counts,
etc.

The dn355_mailbox is a set of mailboxes at fixed hardware
addresses, They start with the fnp pow. Also present are
various counts of requests and the fnp crash data, Following
this are 8 Multics initiated sub-mailboxes and 4 fnp initiated
sub-mai lboxes. The sub-mailboxes describe the line for which the
operation is bkeing performed along with the data for that
operation.

DSEG (DESCRIPTOR SEGMENT)

The descriptor segment is a hardware knhnown data base, It
contains a sdw (segment descriptor word) for each segment within
a process' address space. The ultra important processor register
dsbr (descriptor segment base register]), also called the dbr,
indicates the absolute addraess of the page table describing it.

B-4 AN70-01

The sdw of a segment indicates the address of the page table of
the segment (which contain the locations of the pages of the
segment) and other information, such as the length of the

segment; accesses allowed, etc, dseg must be segment 0, The
initial dseg is geneérated by template_slt_ and copied into dseg
by bootload_abs_mode. Entries are added by bootload_dseq,

get_main and make_sdw as segments are loaded from the MST. The
generation of sdws is integrated with the creation of slt
entries, and the allocation of memory/disk that the sdw/page
tables effectively describe.

FAULT VECTOR (FAULT AND INTERRUPT VECTORS)

This is another hardware Kkhown data base, at a fixed
absolute memory address (0}, 1t contains tTwo words Ffor each
pessible fault and interrupt. Normally, each entry contains a
scu instruction, to store all machine conditions, and a tra

instruction, to transfer to the code that handles the
fault/interrupt. These two instructions are fTorce executed in
absolute mode on the processor. The entries are filled in by

bootlead_faults and initialize_faults, During some phases of
initialization, when a particular fault/interrupt is to be
ignored (such as a timer running outl), the fault vector entry is
set to a scusrcu pair, which stores machine conditions and then
reloads them, returning to the point of interruption. The scu
and tra instructions actually perform indirect references through
“"its" pointers that are present following the interrupt vectors
within this segment. During normal operations, ohly these
pointers are changed.

ELAGBOX

The flagbox is an area of memory, at a known address, that
allows communication between Multics operaticen and bootload
Multics. This area contains information from Multics to bootload
Multics such as the fact that we are crashing, and here's what
exec_com to run. Bootload Multics can pass information up when
booting, such as being in unattended mode so that Multics will
know how to boot. The area is examined by various programs and
set through commands/active functions in both Multics and
bootload Multics operation. This area is within the bce toehold.

INZR STKO (INITJALIZER STACK)

This is the stack used by initialization and shutdown. The
name stands for initializer stack. fOriginally wired, it becomas
paged during initialization, fnce the actual ring 0 stacks are
created and after collection 3, initialization will leave this
stack (in init_procgc). Shutdown will return to this stack for
protection as the stack_0's are deleted.

B-5 AN70-01

INT UNPAGED PAGE TABLES

The page tables for init and temp segments are kept here.
It gets an initial value through template_slt_ and is managed by .

the various segment creation routines. Gnce make_segs_paged is
run, no unpaged segments exists whose page tables are here. So,
we delete this segment. The page table for this segment is

contained within it.

10 CONFIG DATA

The inter-relationship between peripherals, mpc's and icm's
is described in io_config_data. It contains a set of arrays, one
each for devices, channels, controllers and ioms. Each entry,
besides giving the name of each instance of said ochjects, gives
indexes into the other tables showing the relaticnship between it
and the rest, (That is, for example, each device shows the
physical channels going to it; each channel shows the mpec for it,
etc.)

18 PAGE TABLES

The page tables referenced by a paged mode iom for ioi_
operations are found in io_page_tables. It is a abs-wired
segment, maintained by ioci_page_table. It starts with a lock and

indexes of the start of free page table lists. The header ends
with the size and in_use flags for each page tabkle. The page
tables themselves are either 64 or 258 words long; ecach page
table of length N starts at a 0 mod N boundary and does not creoss
a page boundary within the segment.

101 DATA

ioi_data conhtains information pertinent to iei_ (the i/o
interfacer), It holds ici's data itself (ioi_data), as well as
group channel and device entries for ioli handled devices.
ioi_data contains counts of groups, chanhels and devices,
reconfiguration lock, some flags, and then the channel, group and
device entries, A channel/device group entry describes a group
of devices available through a channel. [t contains a lock,

subsystem identifier, various flags describing the device group,
the number of devices and some counters, A channel table entry
describes the state of a channel. It holds status flags, the
io_manager index for +the channel, and a place for detailed
status, A device table entry holds the wired information for an
iol device. Besides pointers linking it to the group and channel
entries, it contains wvarious status bits, workspace pointer,
ring, process_id and event channels for communication with the
outer ring caller, timeout and other time limits, offsets into

B-6 AN70-01

the user's workspace for status storage, and the idcw, pcw, tdcw
and status areas.

1OM DATA

iom_data describes data in use by io_manager, It starts
with 1pw, dew, scw anhd status area for stopping arbitrary
channels,. This 1is folloewed by various meters, such as
invalid_interrupts. Following this, for each iom are various
pieces of state information, on-line, paged mode, etc, It
concludes with more meters and ending with devtab entry indices,
For each device, a status are is followed by various flags
(in_use), channel identification, pcw, lpw and scw, status queue
ptr, and various times and meters.

I10M MAILBOX

This segment is another hardware known and fixed segment.
It is used for communication with the various ioms. The segment
is split into the imw area, which contains a bit per channel per
iom per interrupt level indicating the presence of an interrupt,
followed by the mailboxes for sending information to the ioms and
receiving status back.

KST (KNOWN SEGMENT TABLE)

The known segment table is a per-process segment that keeps
track of hierarchy segments known in a process. Hardcore
segments do not appear in the Kkst. The kst effectively pbrovides
the mapping of segment number to pathname for a process. It is
the keeper of the description of segments that are initiated but
hot active within a process (as well as those that are active).
The Initializer's kst is initialized by init_root_dir. . It starts
with a header providing the 1limits of the kst, as well as
information such as the number of garbage collections, peointers
to the free 1list, what rings are pre-1linked, the 258k segment
enable flag, a uid hash table, the kst entries and finally a
table of private logical volumes connected to this process. Each
kst entry contains a used list thread, the segment number of the
segmenht, usage count per ring, uid, access information, various
flags (directory, transparent usage, etc), an inferior count for
directories or the 1lv index for segments and the pointer to the
containing directory entry. it is this peinter that allows the
name of the segment to be found, Also, the segment number of the
directory entry pcinter allows us to find the kst entry for the
containing directory, etc., allowing us to walk up the hierarchy
te find the pathname of a segment.

B-7 AN70-01

LVT (LOGGICAL VOLUME TABLE)

The logical volume table consists of an array of entries
that describe the various logical volumes. It starts with a
count of entries as well as a maximum count limit. Following
this is a relative pointer to the first entry and a hash table
for hashing 1lvid (logical veolume ids) into lvt entries. The
entries that follow, ohe per logical volume, contain a relative
pointer to the threaded 1list of pvt entries for <the logical
volume, the 1vid, access class info for the volumes and then
various flags 1like public and read_only. It is initialized by
init_lvt to describe the riv and maintained by
logical_volume_manager.

The name_table contains a list of all of the various names
by which the segments in the slt (see below) are known. This
table is used by the sl1t manhagement routines but especially by
the various pre-linkers, who use it to resolve references to
initialization modules. It is generated from template_slt_ and
by the slt management routines, who read in the names from
entries on the system tape.

gC_DATA
oc_data describes data used by ocdcm_ to handle consoles,

It starts with the required lock, version, device counts, etc.
Various flags are kept, such as crash on recovery failure. The

prompt, discard notice are kept here, Status pointers, times,
etc. are followed by information on the process handl ing message
re-routing. Following this are indices into gueues of entries

followed by the gueuss, An entry exists for priority i/o (syserr
output, which always forces a wait until completel, one for a
pending read, and 8 for queued writes. After this are meters of
obscure use. The segment ends with an entry for each configured
console followed by an entry for each element of a event tracing
gueue. Each console entry provides its name, state, tvpe,
channel, status, etc. Each i/0 queue entry provides rcom for the
input or output text, time gueued, flags (alert, input/output,
etc), and status,

PHYSICAL RECORD BUFFER
The physical_record_buffer is a wired area of memory used

by collection 0's and collection 1's MST tape reading routine for
i7o buffers.

B-8 AN70~-01

PVT (PHYSICAL VOLUME TABLE)

gne of the disk describing tables, the physical volume
table contains an entry for each configured disk drive,. It can
in some ways be conhsidered the master disk describing table in as
much as performing i/0o to a disk drive requires the pvtx (pvt
index) of the drive (the index number of the entry in the pvt for
that drive). The pvt entry contains the physical and logical
volume id for the drive, various comparatively static flags about
the drive (such as storage_sysiem, being_demounted,
device_inoperative, etc.), information for the volume dumper and
information about the size, fullness, volmaps and stocks (both
record and vtoc) of the drive. This table iz allccated by
get_lo_segs, and built by init_pvt. The varicus brothers in a
logical volume are chained together in a list by the
logical_volume_manager so that the vtoc_man can have a set of
disks from which to select a target for a nev segment. During
initialization, make_sdwSthread_hcp (for init_root_vols) uses
these threads (before the disk_table is accessed) to form the
list of drives which contain hardcore partitions (those eligible
to contain hardcore segmentis},

SCAS (SYSTEM CONTROLLER ADDRESSING SEGMENT)

This is a very curiocus pseudo-segment, built by scas_init
out of page table words generated inteo scs, It contains one
pseudo-page for each memory controeoller (and another page for each
individual store other than the lowest). The address of the page
is the base address of the store/controller. This segment makes
references to it of the form hx1024 to form an absolute address
to controller n. Thus, instructions like rscr (read system

controller registerl can use this segment (as indeed they do
inside privileged_mode_ut) 1o reference the desired system con-
troller registers.

SCAVENGER DATA

scavenhger_data contains information of interest to the
volume scavenger. Its header is initialized by
init_scavenger_data. The segment starts with the usual lock and
walt event. Foliowing this is the pointer to the scavenger
process table. Then come the meters, The scavenger process
table, which follows, describes the processes performing

scavenging operations,. Each entry contains a process id of a
scavenging process, the pvtx of the drive being scavenged, and
indices of scavenger blocks in use, Scavenger blocks contain
record and overflow blocks used to keep track of pages of a disk
(its claiming vtoce and its state).

B-9 AN70-01

SCS (SYSTEM COMMUNICATIGONS SEGMENT)

The scs is a hodge-podge of information about configuration
and communication between active elements. [t contains informa-
tion about the scus and the cpus. It contains the cow's (connect
operand wordg) needed 1o connect to any given cpu/iom, the
interrupt masks used to mask/unmask the system, the various smic
patterns (set memory interrupt cells), instructions to clear
associative memories and the cache, connect and reconfiguration
locks, various trouble flags/messages used for keeping track of
pending communication of faults to bce, cyclic priority switch
settings, port numbers for controliers, configuration data from
the controllers, processor data switch values/masks, controller
sizes, and the scas page table (see scas).

SLT (SEGMENT LGADING TABLE)

he of the most significant initialization data bases, the
slt describes each initialization segment. It is built initially
from template_slt_, an alm program that not only builds the
appropriate slt entries for collection 0 segments, but also
generates the dseg for collection O, Fach entry in the slt
contains: pointers into name_table of the names and the final

storage system pathname (and acl), if any, for the segment;
access modes, rings, etc. for the segment; various flags used
for generation/ loading of the segment, such as

abs/init/temp/supervisor segment, wired/paged, etc.; the length
and bit_count, etc. 1t is maintained by bootload_slt_manager and
slt_manager, who build entries based on information on the MST.
These entries are maintained so that the wvarious pre-linkers
(bootload_linker and pre_link_hc) can find the target segments of
the variocus references.

The sst (which contains the active segment table) is one of
the most important tables in Multics. 1t is the keeper of active
segments, Each active segment has an entry describing it (its
aste). The aste contains infermation used by segment control and
communicated with page control on the state of a segment. The
most important part of the entry is the page table words {(ptws)
describing the disk/memory location of each page. There are four
pools of astes of different lengths to hold page tables of four

possible maximum lengths: 4, 18, B84 and 256 piws. The entries
are threaded into various lists, The free entries of the various
pools are threaded inte lists. Active segments have their ownh

lists, Separate lists are generated for temp and init (supervi-
sor) segs. Aside from thess threads, each aste also contains
threads used to link segments to their parents and their trailer
seg entry. Status information includes: the segment’'s uid, the
current length, maximum length and records used, the pvitx and

B-10 AN70-01

vtocx of the segment (which couple with the ptws to find the
pages of the segment), various status bits of more cbscure use,

and finally the quota computation information. init_sst origi-
nhally builds this table. The page table words are maintained by
page control, The entries themselves are maintained by segment
control,
53T _NAMES

The sst_names_ segment contains the names of paged segments
described by the sst, 1t is initialized by init_ssi_bnhame_seg
during collection 2 and maintained by segment control only if the
astk parm appears. It starts with information describing the

four aste pools followed by the paged segment primary names,

STACK O DATA

stack_O_data contains information keeping track of the ring
0 stacks (stack_0.nnn) that are shared between processes (one per
eligible process)., It is initialized by init_stack_0, It has a
lock used to control threading of a pool of such stacks. Each
entry contains a list thread, a relative pointer to the aste for
the segment, a relative pointer to the apte for the holding
process, and the sdw for the stack. When this stack is given to
a process, this sdw is forced into its dseg: the acl of the stack
is kept as a null acl.

STOCK SEG

stock_seg contains the record and vtece stocks, a part of
the reliable storage system. Whenever a hnew page or vtoce is
necded for a drive, it is obtained from these stocks. The stocks
are filled by pre-withdrawing a number of records or vtoces from
the drive. This mechanism is used so that, upon a crash, it is
guaranteed that any records or vtoces being created were marked

in the record or vtoc maps as in use, This prevents re-used
addresses.
STR SEG (SYSTEM IRAILER SEGMENT)

The str_seg is a paged segment used by segment control to
perform setfault functions. It is initialized into a list of
free entries by init_str_sed. Each entry contains the usual

backward and forward threads forming a list of trailers for a
given segment (the list itself is found by a relative pointer in
the aste for the segment). When needing to fault a segment, this
list shows all processes containing the segment. The entry shows
the segment number, for a process with this segment active, of

B-11 AN70-01

the segment and a relative pointer to the aste for the dseg of
that process (which is where we need to fault the sdw).

SYS INFO

sys_info is a keeper of all sorts of information about the
state of the system, The most important entries to
initialization are sys_info$sinitialization_state, which takes on
values of 1, 2, 3 and 4 corresponding tc whether we are running
initialization collection 1, 2, 3 or whether we are running
service (beyend ccllection 3}, and sys_info$collection_i_phase,
which takes on values defined in collection_1_phases. incl.pl!l
corresponding to running early, re_early, boot, bce_crash, ser-
vice and crash passes through collection 1. Also included are
key things like:! the scu keeping the current time, the current
time =zohe, various limits of the storage system, and some ips
signal names and masks. The variable "max_seg_size" records the
max imum length of a sagment. This value is changed during bce
operation to describe the maximum length of a bce paged temp
segment. This allows various Multics routines to work without
overflowing segments. Also in sys_info is "bce_max_seg_size",
this bce maximum segment length, This is available for any user
ring programs who desire to 1limit the size of objects they
prepare for the bce file system.

8YS BOOT INFO

See bootload_info, above.

SYSERR_DATA

The syserr_data segment is part of the syserr logging
mechanism. syserr actually just writes messages into this
segment and not to the paged log to avoid problems of paging
during possible system trouble, It is wup to the syserr hproc to

move these messages from syserr_data to the log.

SYSERR LOG

The paged abs-seg syserr_log, which describes the log
partition of disk, is used to hold the syserr log. It is mapped
onto the log partition by syserr_log_init. The syserr mechanism
involves putting syserr messages into syserr_data (which are
possibly written to the console) and then waking up the syserr

hproc which copies them into the paged partition. This is done
so that page faults are taken by the hproc, not by the syserr
caller who may be in trouble at the time. It starts with a

header providing the length of the segment, a lock, relative
pointers +to the first and last messages placed there and alsc

B-12 AN70-01

copied out (by the answering service), the threshold that shows
how full the partition can get before the answering service is
notified to copy out the messages, the event channel for
notification (of the answering servicel and the event for
locking. Fellowing this are entries for the various syserr
messages. Each message iz threaded with the others; it has a
time stamp, id number, and the text and opticnal data portions of
the message.,

JC DATA

tc_data contains information for the traffic contrellier,
The most obvious entry list herein is the 1list of aptes (active

process table entries). There is one apte for every process.
The apte lists activation information for the process, such as
its dbr, its state (blocked/running/stopped/etc.), var ious
per-process meters (such as cpu usage), its work class, and other

per-process schedul ing parameters. Following the apt is the itt
(inter-process transmission table), maintained by pxss (the
traffic controller) to hold wakeups not vet received by a target
process. The call to hcs_$wakeup (or its pxss equivalent) places
an entry in the itt containing the target process id, the event

channel, the message data, etc, The next call to
hecs_$read_events obtains the events waiting for the target
process. Also present in tc_data is various meters (tcm, incl)
and other flags. Imbeded within this is the wect (work class

table) which keeps track of the status of scheduling inte work
classes. tc_init builds these tables (see tc_data_header).

JC DATA HEADER

This is a trick initialization segment. tc_data_header is
allecated wired storage by tc_init to hold the real tc_data,
tc_data, originally build just from a cds segment and therefore
just describing the header of tc_data, is copied in. The sdws
for tc_data and tc_data_header are then swapped. As such, the
initialization segment tc_dats_header (which describes the read
in tc_data) is deleted, but tc_data (now mapped onto the
allocated tc_data_header area) remains,

TOEHOLD

The toechold is another area for Multics/bootload Multics -
communication. (IAh particular, the flagbox is contained within
it.) The toechold is a small program capable of getting to

bootload Multics from a crashing/shuting down Multics service,
(Its name is meant to suggest holding on by one's toes, in this
case to bootload Multics.) init_toehold builds a dcw (device
control word) list that, when used by the toehold program, can
write the first 512k of memory (those used by bootload Multics)

B-13 AN70-01

out to the bce partition and read in bootload Multics (saved in
the bece partition by init_toehold). The program runs in absolute
mode. It is listed here because it contains the flaghbox and the
all important dcw lists.

ITY AREA

Terminal control blocks {tcbhb's) are allocated in tty_area.
It is initialized to an area by fnp_init and managed by the
var ious communication software.

ITY BUF

The tTty_buf segment contains, ocbviously enough, the tty
buffers used for manipulating data communicated with the fnp. It
contains various meters of characters processed, number of calls
to various operations, echo-negotiation, etc. , trace control
information and timer information. Following this is the
tty_trace data, if present, and the tty_buffer_block's, split

into free blocks and blocks with various flags and characters in
chains. The layout of this segment into empty areas is done by
fnp_init,

ITY TABLES
tty_tables is an area in which tables (conversion and the

like)l are allocated. It has the usual lock and lock event. It
is initialized by frnp_init.

UNPAGED PAGE TABLES

All permanent non-per-process unpaged segments have their
page tables Iin unpaged_page_tables. The page table for this
segment is also within it. It is generated initially by

template_slt_. =and added to by the various segment creation
routines, The header of unpaged_page_tables contains the abso-
lute address extents of all hardcore segments that contain page
tables: these are unpaged_page_tables, int_unpaged_page_ tables
and sst_sed. Dump analyzers 1look here to resolve absolute
addresses from sdws into virtual addresses of page tables.

VIGC BUFFER SEG

vtoc buffers live in the vtoc_buffer_segq. The segment is
allocated and initialized by init_vtoc_man, It starts with the
usual global lock and wait event. Following this are various
parameters of the amount and usage of the vtoc buffers, including
information about the vtoc buffer hash table, Then comes the

B-14 AN70-~01

vtoc_man meters. Finally comes the hash table, the vtoc buffer
descriptors (pvtx - vtocx info, etc.) and the vtoc buffers
themselves,

Wl LINKAGE (WIRED INIT LINKAGE)

This initialization segment corresponds to area.linker for
wired initialization segments. It is built by the MST loading
routines,

WIRED HARDCORE DATA

Another collection of data for hardcore use, this segment
is permanent, 1t contains the size of a page, the amount to wire
for temp-wiring applications, the history register contral flag,
the trap_invalid_masked bit, a flag specifying the need for
contiguous i/o buffers (if a non-paged iom exists), the debg card
options, the fim fault_counters and the bce abort_request flag.

WS LINKAGE (WIRED SUPERVISOR LINKAGE)

This wired hardcore segment, shared between processes,
corresponds to area.linker for wired hardcore programs, It is
built by the MST locading routines,

B-15 AN70-01

APPENDIX C

MEMORY LAYOUT

iIn the memory layout charis below, the starting absolute
address and length for each data area is given (in octall. When
a number appears in brackets ([]1), this means that it is really a
part of the segment listed above it,

The memory layout after the running of collection 0 (the
loading of collection 1) follows,

start length contents
0 600 fault_vector
1200 2200 fom_mailbox
3400 3000 dn355_mailbox
10000 2000 bos_toehold
12000 10000 conf ig_deck
24000 22000 bound_bootload_0
[240001 [40001 [{bootliocad Multics) toecholdl
[240001] [20001] [flagbox (overlays the tochold)l]
[300001 inl [bootload_early_dumpl
46000 4000 - tochold data . . _
52000 2000 unpaged_padgde_tables
54000 2000 int_unpaged_page_tables
56000 2000 breakpoint_page
60000 o000 physical_record_buffer
86000 2000 dseg
70000 10000 name_table
100000 4000 slt
104000 2000 lot
106000 and up wired segments
fabricated segments
1777777 and down all other segments
The =sbsolute addresses of most of these segments is
arbitrary. Hardware known data bases must be at their proper
places, though; also, the toeholds are placed at addresses khown
to operators. Except for these exceptions, the segments may be

moved, Their addresses are contained in bootleocad_egus. incl.aim.

Cc-1 AN70-01

A1l programs refering to this include file must be reassembled if
these addresses are changed. Certain interdependencies exist
that one must be aware of. First of all, the tochold is placed
at a 0 mod 4 page address. physical_record_buffer must be the
last of the fixed memory address segments. The length of all
segments is an integral number of pages. The two unpaged page
tables segments must be large enough to meet the demands on them;
refer to announce_chwm, Also, the length given for
bound_bootload_0 must hold the text thereof.

After collection 1 has finished, segments have been made
paged and collection 1 temp segments have been deleted, the
memory lavout is as follows.

start length contents
0 600 fault_vector
1200 2200 iom_mailbox
3400 3000 dn355_mai lbox
10000 2000 bos_toehold
12000 10000 config_deck ‘
24000 4000 tochold {(bootload Multics)
[240001 E20001 [flagbox (overlays the toehold)l
46000 4000 tochold_data
52000 2000 ‘ unpaged_page_tables
56000 2000 breakpoint_page
60000 and up paging arez
high mem 8st_segd

c-2 AN70-01

INDEX

aborting bce requests
sece bece, aborting requests

abs-seg 3-10, 3-13, 3-16,

: 3-17, 38-18, 3-19, 4-3,
4-5, 4-16, 4-18, 6-8, A-1,
B-2

absolute mode 2-2

accept_fs_disk 6-3

accept_rpv 6-3, 8-14
active init linkage
see ai_linkage

active segment table
sce sst

active supervisor linkage
see as_linkage

ai_linkage 2-7, 3-20, B-1

announce_chwm 3-8
appending simulation 4-4
see also bce_dump and

bece_probe

area, linker
see linkage sections

assume_config_deck 2-7

aste pools

as_ 1 inkage

bce

3-12, B-10

2-7, 3-20, B-1

B
1-3, A-1
aborting requests 3-18, 4-6,
4-11
alert messages 4-4
areca usage 4-2
command level 4-10, 4-195

bce_crash 3-2
boot 3-1
crash 3-1
early 3-1
command processing 4-2, 4-9,
4-11
communication with Multics
B-5
config_deck manipulation
4-17
data B-1
disk accessing 4-3, 4-16
error reporting 4-2, 4-8
exec_com 4-9
facilities 4-1
file system 3-16, 4-3, 4-16,
4-18
firmvare
loading 4-10
i‘o switches 4-2, 4-7, 4-18,
B-1
initialization 4-1, 4-18
invocation upon a crash
B-14

AN70-01

bce (cont)
machine state 5-2
paged programs 3-16
partitions
creatien 3-6, 3-8, 3-13
usage 3-16, 4-1, 4-3,
4-186, 4-17, 4-18

bce_execute_command. 4-9
bce_exec_com_ 4-9
bece_exec_com_input 4-2

bce_fwload 3-16, 4-10

probe 4-7, 4-8, 4-10, 4-11,
4-14, 4-15 bece_get_flagbox 4-10
current address 4-13,
4-14 bce_get_to_command_level 4-10

guestion asking 4-2;, 4-14
ready messages 4-15 bce_inst_length_. 4-10
reinitialize 4-10
reguest processing 4-2, 4-8 bce_listen_ 4-11
request table 4-15
restrictions 4-3 bce_list_requests_ 4-11
temp segments 4-3, 4-17

bece_abs_seg 4-4

bce_map_over_requests_ 4-11

bce_name_to_segnum_ 4-11
bece_alert 4-4

bce_probe 4-11
bce_alm_die 4-4 see also bce, probe
bece_appending_simulation 4-4, bece_probe_data 4-14

4-8, 4-14

bce _query 4-14
bece_check_abort 4-6

bece_ready 4-15
bce_command_processor_ 4-6

bce_console_io 4-7 4-15
bce_continue 4-7 bce_reguest_table_ . . 4-15
bce_crash bce command level bce_severity 4-15
see bce, command level,
bece_crash bee_shutdown_state 4-185

bce_data 4-7, B-1 bce_state 4-18
bce_die 4-7 boot

cold 3-13, 6-4, 6-7, A-1
bce_display_instruction_ 4-7 cool A-2

froem bce 4-10
bece_display_scu_ 4-8 from BOS 2-1

from disk A-6
bce_dump 4-8 from iom 2-1

from tape A-2
bce_error 4-8 initial A-1

warm A-S
bce_esd 4-9

i-2 AN70-01

bece_relocate_instruction_

boot bce commanhd level bootload_tape_fw 2-8
see bece, command level, boot
bootload_tape_label 2-1, 8-1
bootload command environment

see bce boot_rpv_subsystem 3-8
bootload command environment beoct_tape_io 3-8
cdata
see bcece data BOS
getting to from bce 4-7
bootload Multics 1-1, A-1 presence of 2-7
bootload_0 2-3 bound_kocotload_0 2-1, 8-1
bootload_1 3-8 breakpeints 3-15, 3-186, 3-17,
4-12, 4-13, 4-14, 5-2
bootload_abs_mode 2-2 see also breakpoint_page
bootload_console 2-4 breakpoint_page 2-7, 3-9,
3-18, 3-17, 3-18, A-5
bootload_disk_post 4-16 see also breakpointis
bootload_dseg 2-4, 8-1
' C
bootload_ecariy_dump 2-5
bootload_error 2-95 central processor

see cpu
bootload_faults 2-5
channel table entry 7-2, B-6"
bootload_file_partition 4-186,
4-18 chantab B-3

bootload_flagbox 2-8 clock
L . _ _setting 3-12
bootload_formline 2-6

cold boot

bootload_fs_ 4-16 see boot, cold
bootload_fs_cmds_ 4-17 collection 1-1, A-2
bocotload_info B-1 collection 0 1-2, 2-1

console support 2-4
bootload_ioc 2-6 data B-1

error handling 2-5
bootlocad_tlinker 2-7 input/output 2-6

interrupts 2-6
bootlocad_loader 2-7, 8-1 main driver 2-3

programming in 2-2
bootload_gedx 4-17

collection 1 1-2, 3-1
bootload_slt_manager 2-7 bee_crash pass 3-2, 3-7

i-3 AN70-01

collection 1 (cont)
boot pass

sequence 3-2

bootload Multics pass 3-1
crash pass 3-1, 3-7
carly pass 3-1

sequence 3-5
passes summary 3-1
re_early pass 3-2, 3-7

see also bce

service pass
seguaence

shut pass

3-1
3-4
3-1, 3-7
collection 2 1-3

loading 3-20

pre-linking 3-18

sequence 6-1

collection 3 1-3, 7-1

collection_1_phase B-12
collect_free_core 3-89

conditions _
signalling 3-185

configuration
data
see config_deck and scs
initialization seguence
8-11
memory 8-S

config_deck 3-10, B-2
changes to 4-10
editing 4-17

initial generation 3-12

setup 3-5
config_deck_data_ 4-17
config deck_edit_ 3-10, 4-17

connect operand words 3-20

console
collection O 2-4
driver
see ocdom_
locating 2-4

contigucus A-2
cool boot
see boot, cool

core high water mark 3-8

core_map 3-14, 3-17, 8-13,
B-2

cow
see connect cperand words

cpu
data B-10
description 8-4
initialization of data
starting 6-9, 7-3

3-20

crash A-2
early in
handler
handl ing
image

access 4-4

restarting 4-7, 5-2
machine state 5-1
memory saving 5-1
memory state B-13
memory swapping B-13

initialization 5-1
3-1, 3-3
1-4, 5-1

crash bce command level
see bce, command level,
crash
create_root_dir 6-4

create_root_vtoce 6-4

create_rpv_partition 3-9
cte
see channel table entry

data
about
about
about
about

active segments B-10
bce B-1
bootload tape B-1

collection 0 B-1

AN70-01

data (cont)
about configuration
sce config_deck and scs
see io_config_data
about core frames B-2
about cpus B-10
about hardcore segments
B-10
' about processes B-13
about rpv B-2
about storage system B-i2
about system controllers
B-10
about system state B-12

data bases BF1
dbm_man 6-4

dom_seg 6-4, B-3

dor B-4
deactivate_for_demount 9-4
deciduous segments

see segments, deciduous

delete_segs 3-9
demount_pv 9-5
deposit A-3

descriptor segment
see dseg

descriptor segment base
register
see dbr
device table entry 7-2, B-8
devtab B-3

directory
locking B-3
dir_lock_init 8-4, 8-14

dir_lock_seg 8-4, B-3

disk
accessing 3-18, A-1,
iZo posting B-3
storage system
acceptance 6-G
demounting 9-5

B-9

disk queue B-3

disktab B-3

disk_data B-3

di sk_emergency 8-5
disk_post_queue_seg

disk_reader 3-8

disk_seg 3-11, B-3

dm_journal_seg. 6-8, B-4

dn355_data B-4

dn355_mailbox 6-5, B-4

dseg 2-8, 3-17, A-3, B-4

dte
see device table entry

dump
early 2-5, A-3
to disk 4-8, A-3
to tape A-3

dumper bit map seg
see dbm_seg

early bce command level
see bce, command level,
early

early initialization
dumps 2-5
see initialization, early

emergency shutdown 4-9

AN70-01

emergency shutdown (cont)

see shutdown, emergency
emergency_shutdown 9-5
errors
handl ing
in bce 3-14

in collection 0 2-S
reporting

bce 4-8

syserr B-12
see also failures

esd _ . .
see shutdown, emerdency

establish_config_deck 3-10
establish_temp_segs 4-8, 4-17

execute
register

interrupt cell
8-8

execute interrupt mask
register 8-9

failures
of boot initialization
of Multics A-2
of service initialization
3-2
sce also ertrors

3-2

fast cohnect code 3-18

fault_vector 2-95
see also vectors

fill_vol_extents_ 3-10
fim 5-2
find_file_partition 4-18

find_rpv_subsystem 3-10

firmware
loading
general mpcs
in bce 4-10
into boot tape controller

3-11

2-8
non-bootload disk mpcs
3-3, 3-16

rpv disk mpec 3-8, 3-8
location 4-10

for boot tape mpc 2-3
naming 2-3

flagbox B-5

management 2-6, 4-7, 4-10
fnp_init 6-4
fsout_wvol 9-6

G

gates

initialization 6-86

linkages 8-15
getuid 6-5, 8-14
get_io_segs 3-11
get_main 3-11, 8&-2

group table entry 7-2, B-6.

gte
sec group table entry

hardcore A-3, A-D
address space 6-1

hardcore partition
accessing 3-13
allocation from 3-17, 6-3
amount of utilization 6-3
loecating 3-13
usage 6-8, 8-2, A-2, A-4

AN70-01

hardcore segments initializer stack
creation 8-1 see stack, initialization
numbering 6-8, 8-15
initialize_faults 3-15, 6-9

hardware
 configuration 8-5 initialize_faults_data 3-15
inter-connection 8-3
inter-module communication initial_error_handlier 3-14
8-7

init_aste_pools 3-12
ho_load_mpe 3-11

init_bce 4-18
hproc 6-10, A-3

init_branches 6-5, A-2

1 init_clocks 3-12

init_dm_journal_seg 6B6-6
idle loop 8-7
. init_early_config 3-12
idle process 6-9, 6-10, 8-18
init_empty_root 3-12
init segments 3-9

see segments, init init_hardcore_gates 6-8
initialization A-3 init_hc_part 3-13
bce 4-1, 4~18
boot failure 3-2 init_lvt 86-8, &-14
configuration 8-3
sequnce 8-11 init_partitions 3-13, 8-14
directory control 6-1, 8-14
disk conmtrel 3-3 init_proc 7-1
early A-3
file system 1-3 init_processor 6-86, 8-18
gates 6-6 : -
hardware 8-3 init_pvt 3-13, 8-13
linking of A-4
page control 1-2, 3-3, 8-13 init_root_dir 6-7, 8-14
pl/1 environment 1-2
rpy 3-14 init_root_vols 3-13, 8-13
scu 3-14
segment control -1, 5-14 init_scavenger_data 6-7
service failure 3-2
storage system 6-1 init_scu 3-14
summary 1-1
traffic control 3-21, &6-1, init_sst 3-14, 8&-13
8-16

init_sst_name_seg 6-7
initialization_state B-12

init_stack_0 6-7
initializer 3-15

init_str_seg 65-8, 8-14

i-7 AN70~01

init_sys_var ©6-8

init_toehold 5-1, 5-2, B-13
init_volmap_seg 6-8
init_vol_header 38-14
init_vtoc_man -9, 8-14

input/output
in collection 0 2-8

inter-process transmission
_ table
seec ittt

interrupt mask assignment
register 8-9

interrupt vectors
see vectors, interrupt

interrupts

collection 0O 2-8
mask assignment 8-9
mask operations 8-10
mask values 8-11

int_unpaged_page_tables
see segments, unpaged

inzr_stkO

see stack, initialization

ioi_ 7-2

ioi_data 3-11, B-8
ioi_init 7-2
ioi_page_table 7-3

iom
description 858-4

iom_data 3-11, 3-186, B-7

iom_data_init 3-16, 8-11
iom_mailbox B-7

io_config_data 3-11, 7-2, B-8

‘1oad‘disk_mpcs

io_config_init 7-2

io_page_tables
see page tables,
iom

paged mode

itt B-13

knhown segment table
sece kst

kst 6-9, 8-14, A-4, B-7

kst_util 6-9

lct B-4

1linkage sections
B-1, B-15
hardcore gates finding 6-6

2-7, 38-20,

linking
see pre-linking

loading
of collection O
~of cellection 1
of collection 2
3
3_

of collection

o \!(JIDNN
WN -
o

1
load_mst 3-16
load_system 7-3

locking
directories 6-4

logical channel table
see lct

logical volume table
see 1vt

AN70-01

vt 6-6, 8-14, A-4,

mailboxes
datanets B-4
iom 23-18, B-7
make_sdw 3-186, 3-21, 8-2
make_segs_paged 3-17, A-5,
B-6

memory
accessing A-1
allocation 3-11
allocation from slt
3-11, 8-2
extent of usage 3-9
freeing 3-9, 3-17
layout A-2
after collection 0 C-1
after make_segs_paged C-2
anhouncing 3-8
placement 3-17
required placement
paging use 3-8
requirements for bootload
3-4

3-3,

c-1

move_noh_perm_wired_segs 3-17

MST 38-16, 3-20, A-4
disk reading 3-9
tape reading 3-8, 3-21
multi-programming 6-10

Multics system tape
see MST

name_table 2-8, B-8

nondeciduous segments
see segments, nohdeciduous

ocdecm_ 3-18, 4-6, 4-7
data B-8
oc_cata B-8

see also ocdcem_, data

page table word
see plw

page table word associative
memory
see ptwam

page tables
absolute to virtual
addresses B-14
active segments B-10
paged mode iom 7-2, B-6
scas B-10
see also unpaged page tables
unpaged segments
see segments, unpaged
paging
of bce segments 3-16, 4-1
of initialization ssgments
3-17

partition A-4
see bce, partitions
see hardcore partition

pathname associative memory
&6-7

physical volume
seg disk

physical volume table

see pvt
physical_record_buffer B-8
pll environment
sgetup 3-8
AN70-01

prds_init 3-18
pre-linking 2-1, A
initialization A-
of collection 0 2-1
of collection 1 2-7
of collection 2 3-1
pre-withdrawing B-11
pre_link_hc 3-18

probe
see bce, probe 4-7

ptw A-4

ptwam A-4, A-5

pvt 3-11, 3-13, 8-13, A-4,

B-9

read_disk 3-19, 8-13

read_disk_label

read_early_dump_tape 2-5

real_initializer 3-19
reinitialize 4-10
reload 7-1

reguest tabile
see bce, request table

ring 1 command level 7-1

root dir
activation 6-7
creation 6-4, 6-7

root physical volume
see rpv

rpv A-S
initiatization 3-12
layout 3-10

3-19, 8-13

rpv {cont)
locating 3-10

S

safe_config_deck 3-3
salvaging 6-3, 6-5, 6-8
save_handler_mc 5-2
scas 3-20, A-5, B-9
séés_init 3-20
scavenger 9-6
scavenger_data 6-7, B-9
scs 3-20, A-5, B-10

scs_and_clock_init 3-20,

sSCuU
addressing 8-6
data B-10

description 8-3
initialization of data
register access B-8

sdw 2-4, 8-2, A-5, B-4
creation 3-18

segment descriptor word
see sdw

segment descriptor word
associative memory
see sdwam

segment loading table
see slt

segments
activation information
deactivation 98-4

deciducus 6-5, 8-3, 8-

O-4, A-2
hardcore
dgata B-10

i-10

&
1

11

B-7

135,

AN70-01

segments (cont)

start_cpu 6-9, 8-16

hardcore
permanent : stocks 3-11, 8-13, 9-6, B-9,
numbering 8-15 B-11

hierarchy

init

nohdeciduous

numbering 8-195
3-9, A-3

numbering 8-195
A-4

humber i ng

fixed 8-15
outer ring B-7

synchronized 6-6, B-4
temp 3-9, A-5

stock_seg B-11
stop on switches 3-20
str_seg 6-8, B-11

superviscer
see hardcore

numbering 8-15 switches
unpaged A-5, B-8, B-14 iZo
sce bece, i/0 switches
segment_loader 3-20
switch_shutdown_+ile_system

setfault B-11 9~-7
shutdown 9-1, 9-8, A-5 synchronized segmentis

emergency 4-98, 9-3, 9-5, see segments, synchronized

9_
normal g-7

A-3

part 1 2

shutdown_file_system 9-7

shutdown_state

slt

9-6

2-7, 2-8, 3-21,
B-10

A-D, B-8,

memeory allocation from

syserr_data B-12
syserr_log 6-9, B-12
syserr_log_init 6-9

system communications segment
see scs

system controller

see memery, allocation see Scu
" from slt
system controller addressing
slt_manhager 3-21 segment
see scas
sst 3-14, 3-17, 8-13, 8-14,
B-11 system segment table
see 38t
sst_hames_ 6-7, B-11
system trailer segment
stack see stir_seg
collection 0O 2-2
initialization B-5 system_type 2-7
ring 0 6-7, B-11
segment numbering 8-15 sys_boot_info B-1
shutdown 9-4, 9-8, 8-7, B-5
sys_info B-12

stack_O_data B-11

i-11 AN7Q-01

sys_infoSbce_max_seg_size
4-18

tape_reader 3-21
tcb B-14

tc_data 3-21, B-13
tc_data_header B-13

tc_init 3-21, 6-10, 7-3, 8-16

tc_shutdown 9-7

temp segments 3-9
see segments, temp

template_slt_ 2-8, 8-1,
B-6, B-8, B-10, B-14

B-5,

terminal control blocks
see tch

toechold 2-5, 5-1, B-13

entry points 5-1

&-1,

traffic control
data B-13
initialization
see initialization,
traffic control
shutdoewn 9-7

tty_area 6-4, B-14

tty_buf 6-4, B~14

tty_tables 6-5, B-14
U

uid 8-5, 8-14, A-5

unigue identifier
see did

i-12

unhpaged page tables 2-7, 2-8,
3-8, 3-11, 8&-2

unpaged segments

see segments, unpaged
14
vectors
fault B-5

initialization 3-15
collection 2 6-9

interrupt B-5

see also fault_vector

setup 2-5

volmap_seg 6-8

volume table of contents
sce Vtoc

vitoc A-O
accessing 6-8
updating 9-5, 9-6

vtoce A-©6
accessing 6-3, 6-9, 8-14
buffers 6-9, 9-7, B-14
creation
deciduous segments
8-3 '
initial 3-14
. root dir 6-4
deactivation 8-5
dumper bit B-3
scavenger B-9
specifying number 3-13
stock 9-6, B-9, B-11
updating 6-8, 9-1, €-4
updating for partition
creation 3-9

6-5,

vtoc_buffer_seg B-14

W

wakeups B-13

AN70-01

warm
see

wired

wired
see

wired
see

wired
wired
withd
wi_11i

ws_ 11

boot
koot, warm

A-B

init linkage
wi_linkage

supervisor 1inkage
ws_1linkage

_hardcore_data B-15
_éhutdown Q-7

raw A-6

nkage 2-7, 3-20, B-15

nkage 2-7, 3-20, B-15

i-13

AN70-01

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	5-01
	5-02
	5-03
	5-04
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	7-01
	7-02
	7-03
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	9-01
	9-02
	9-03
	9-04
	9-05
	9-06
	9-07
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	C-01
	C-02
	i-01
	i-02
	i-03
	i-04
	i-05
	i-06
	i-07
	i-08
	i-09
	i-10
	i-11
	i-12
	i-13

